Please wait a minute...
金属学报  2023, Vol. 59 Issue (9): 1265-1278    DOI: 10.11900/0412.1961.2023.00197
  研究论文 本期目录 | 过刊浏览 |
/降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理
郑亮1(), 张强1,2, 李周1, 张国庆1()
1北京航空材料研究院 先进高温结构材料重点实验室 北京 100095
2北京科技大学 北京材料基因工程高精尖创新中心 北京 100083
Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing
ZHENG Liang1(), ZHANG Qiang1,2, LI Zhou1, ZHANG Guoqing1()
1Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

郑亮, 张强, 李周, 张国庆. 增/降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
Liang ZHENG, Qiang ZHANG, Zhou LI, Guoqing ZHANG. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. Acta Metall Sin, 2023, 59(9): 1265-1278.

全文: PDF(6044 KB)   HTML
摘要: 

采用场发射扫描电镜(FESEM)、X射线光电子谱(XPS)、高角环形暗场扫描透射电镜(HAADF-STEM)以及程序升温脱附与质谱联用(TPD-MS)等表征手段研究了不同窄粒度范围镍基高温合金粉末的原始表面状态以及存储和脱气等增/降氧过程对合金组织和性能的影响。结果表明:不同粒度原始态粉末的表面组成均为NiO/Ni(OH)2、TiO2、CoO和Cr2O3,0~15 μm粒径粉末(细粉)和150~180 μm粒径粉末(粗粉)平均氧化膜厚度分别为3.32和10.90 nm。细粉和粗粉在空气环境中存储后氧含量逐渐增大,在3~10 d达到稳定值,分别约为250 × 10-6和40 × 10-6。存储后0~53 μm粉末制备的块体合金氧含量升高,室温、650℃和750℃拉伸强度变化不大,但塑性下降,合金在650℃、890 MPa和750℃、530 MPa的持久性能均下降。0~15 μm细粉加热过程中(室温~1000℃)会发生气体脱附,存在明显脱附峰的气体包括CO2、H2O和H2,粉末表面气体的脱附温度范围主要在100~600℃,脱附峰主要集中在300~600℃温度段,150~180 μm粗粉加热过程脱附峰不明显。0~53 μm的粉末采用300℃ + 600℃温度组合方式除气后制备的合金氧含量从初始状态的195 × 10-6下降到113 × 10-6,合金力学性能更优,性能提升主要表现在合金的塑性升高。高温合金粉末增氧机制主要包括表面氧化和表面吸附,而降氧机制主要为粉末表面吸附的含氧气体的脱出。采用高温合金粉末升温脱附曲线中峰位所处温度精确定制除气保温温度组合,通过25℃ + 150℃ + 310℃ + 470℃低、中、高温组合多级除气处理使得空气中存储过的镍基高温合金粉末(0~53 μm)氧含量可进一步降低到(87~96) × 10-6

关键词 镍基高温合金粉末氧含量粉末表面特性氧存在形式粒度范围除气处理粉末存储力学性能    
Abstract

Oxygen content of Ni-based superalloy powders is higher than those of their bulk alloy counterparts due to the larger specific surface area of the former, which is detrimental to the performance of powder metallurgy (PM) and additive manufacturing (AM) superalloys. Therefore, at present, research in this field is primarily focused on understanding the mechanism of oxygen content increase of the powders and approaches of oxygen decrease. Storage and degassing treatment are typical processes of increasing and decreasing of oxygen content in superalloy powders, respectively. Studying the effects of these processes is of great significance for guiding the optimization of powder treatment processes and further improving alloy properties. The original surface state of powders with different narrow particle size ranges, as well as the effects of oxygen increasing/decreasing processes, i.e. storage and degassing, on the microstructure and mechanical properties of alloys were investigated using field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and temperature programmed desorption with mass spectrometry (TPD-MS). The results indicate that the surface composition of the original powders with different particle sizes has no significant difference, all samples exhibit NiO/Ni(OH)2, TiO2, CoO, and Cr2O3 on their surfaces. The average thickness of the surface oxide layer for 0-15 μm fine and 150-180 μm coarse powders is 3.32 and 10.90 nm, respectively. The oxygen content of the 0-15 μm fine powders and 150-180 μm coarse powders gradually increases in ambient air environment and stabilize at about 250 × 10-6 and 40 × 10-6, respectively, within 3-10 d. The oxygen content of the bulk alloy consolidated from the post-storage powders (0-53 μm) increased compared to that of the alloy from pre-storage powders, and the tensile strength at room temperature, 650oC, and 750oC showed minor changes, but the ductility decreased and the stress rupture properties of the alloy at 650oC, 890 MPa and 750oC, 530 MPa decreased. During the heating process from room temperature (~25oC) to 1000oC, the gas desorption occurred on the 0-15 μm fine powders, with desorption peaks of CO2, H2O, and H2 observed. The gas desorption mainly occurred on the powders surface in the range of 100-600oC, and the desorption peaks are mainly located within 300-600oC. However, the desorption peaks were not obvious during the heating of the 150-180 μm coarse powders. The oxygen content of the alloy consolidated from powders with particle size range of 0-53 μm decreased from 195 × 10-6 in the initial state to 113 × 10-6 after the (300oC + 600oC) combined degassing process. Alloys prepared from powders that underwent combined degassing exhibited higher mechanical properties, with the performance improvement mainly reflected in the ductility index of the alloy. The oxygen increase mechanism of superalloy powders mainly includes surface oxidation and surface adsorption, while the oxygen decreases mainly due to the desorption of oxygen-bearing gases on the powder surface. The temperatures of the peak position in the desorption curves of superalloy powders were selected to accurately customize the holding temperature of the degassing process. As a result, through multi-stage degassing treatment at 25oC + 150oC + 310oC + 470oC, the oxygen content of the powders (0-53 μm) stored in ambient air was further reduced to within (87-96) × 10-6.

Key wordsNi-based superalloy powder    oxygen content    powder surface characteristic    existing form of oxygen    particle size range    degassing process    powder storage    mechanical property
收稿日期: 2023-05-04     
ZTFLH:  TG132.32  
基金资助:国家自然科学基金项目(52071310);国家自然科学基金项目(52127802);国家科技重大专项项目(Y2019-VII-0011-0151);重点实验室基金项目(6142903200303);重点实验室基金项目(6142903220302)
通讯作者: 张国庆,g.zhang@126.com,主要从事高温结构材料及其制备技术研究;
郑 亮,liang.zheng@biam.ac.cn,主要从事高温合金及其制备与表征技术研究
Corresponding author: ZHANG Guoqing, professor, Tel: (010)62496137, E-mail: g.zhang@126.com;
ZHENG Liang, senior research engineer, Tel: (010)62498268, E-mail: liang.zheng@biam.ac.cn
作者简介: 郑 亮,男,1979年生,高级工程师,博士
张 强,男,1988年生,博士(共同第一作者)
图1  不同窄粒度范围FGH96高温合金粉末的表面形貌
图2  不同窄粒度范围FGH96高温合金粉末的XPS全谱
图3  不同窄粒度范围FGH96高温合金粉末表面Ni2p、Ti2p、Co2p、Cr2p、C1s和O1s的XPS高分辨谱
图4  不同窄粒度范围FGH96高温合金粉末表面元素含量随XPS刻蚀深度的变化
图5  金属Ni (Nimet)和O在离子刻蚀不同深度处的相对离子强度变化曲线
图6  不同窄粒度范围FGH96高温合金粉末的表面氧化膜的截面HAADF-STEM像和EDS面扫描图
图7  不同窄粒度范围FGH96高温合金粉末在大气环境中(温度20℃、湿度40%~50%R.H.)存储不同时间的氧含量变化曲线
图8  原始态和大气环境存储90 d后< 53 μm粒度的FGH96高温合金粉末经热等静压(HIP)固结成形后显微组织的SEM像、EBSD结果及晶粒尺寸分布
图9  HIP-1和HIP-2块体合金分别在室温(25℃)、650℃和750℃条件下的拉伸应力-应变曲线及力学性能
图10  HIP-1和HIP-2块体合金分别在室温(25℃)、650℃和750℃条件下的拉伸断口形貌
Stress rupture conditionAlloyRupture life / hEl / %A / %
650oC, 890 MPaHIP-129.1 ± 1.227.7 ± 1.125.2 ± 0.9
HIP-222.0 ± 0.522.5 ± 1.921.6 ± 1.2
750oC, 530 MPaHIP-132.4 ± 0.814.1 ± 0.316.3 ± 0.4
HIP-228.1 ± 0.610.1 ± 1.710.9 ± 1.3
表1  HIP-1和HIP-2块体合金分别在650℃、890 MPa和750℃、530 MPa条件下的持久性能
图11  不同窄粒度范围FGH96高温合金粉末的气体脱附曲线(a) 0-15 μm (b) 150-180 μm
SampleDegassing parameterOxygen content / 10-6
25oC degassing25oC, 2 h195
300oC degassing25oC, 2 h + 300oC, 5 h140
600oC degassing25oC, 2 h + 600oC, 5 h124
300oC + 600oC degassing25oC, 2 h + 300oC, 5 h + 600oC, 5 h113
表2  FGH96高温合金粉末(0~53 μm)的除气实验工艺参数设定和所制备合金的氧含量
图12  不同除气工艺下FGH96高温合金粉末经HIP固结成形后合金的显微组织
图13  不同除气工艺处理的FGH96高温合金粉末经HIP固结成形后合金的室温和高温拉伸性能
图14  空气环境存储粉末经25℃和300℃ + 600℃真空除气处理后HIP态FGH96合金的拉伸断口形貌
图15  镍基高温合金粉末多级除气工艺参数的优化精确定制与制备合金的氧含量
1 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Propuls. Power, 2006, 22: 361
doi: 10.2514/1.18239
2 Reed R C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 2
3 Zhang G Q, Zhang Y W, Zheng L, et al. Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application [J]. Acta Metall. Sin., 2019, 55: 1133
3 张国庆, 张义文, 郑 亮 等. 航空发动机用粉末高温合金及制备技术研究进展 [J]. 金属学报, 2019, 55: 1133
4 Bai Q, Lin J, Tian G, et al. Review and analysis of powder prior boundary (PPB) formation in powder metallurgy processes for nickel-based super alloys [J]. J. Powder Metall. Min., 2015, 4: 127
5 Tan L M, Li Y P, Liu C Z, et al. The evolution history of superalloy powders during hot consolidation and plastic deformation [J]. Mater. Charact., 2018, 140: 30
doi: 10.1016/j.matchar.2018.03.039
6 Rao G A, Srinivas M, Sarma D S. Effect of oxygen content of powder on microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng., 2006, A435-436: 84
7 Zheng B L, Ashford D, Zhou Y Z, et al. Influence of mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses [J]. Acta Mater., 2013, 61: 4414
doi: 10.1016/j.actamat.2013.04.011
8 Dai D H, Gu D D. Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites [J]. Int. J. Mach. Tools Manuf., 2016, 100: 14
doi: 10.1016/j.ijmachtools.2015.10.004
9 Hryha E, Gierl C, Nyborg L, et al. Surface composition of the steel powders pre-alloyed with manganese [J]. Appl. Surf. Sci., 2010, 256: 3946
doi: 10.1016/j.apsusc.2010.01.055
10 Chasoglou D, Hryha E, Norell M, et al. Characterization of surface oxides on water-atomized steel powder by XPS/AES depth profiling and nano-scale lateral surface analysis [J]. Appl. Surf. Sci., 2013, 268: 496
doi: 10.1016/j.apsusc.2012.12.155
11 Karlsson H, Nyborg L, Berg S. Surface chemical analysis of prealloyed water atomised steel powder [J]. Powder Metall., 2005, 48: 51
doi: 10.1179/0032589005X37675
12 Wendel J, Shvab R, Cao Y, et al. Surface analysis of fine water-atomized iron powder and sintered material [J]. Surf. Interface Anal., 2018, 50: 1065
doi: 10.1002/sia.v50.11
13 Riener K, Oswald S, Winkler M, et al. Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF) [J]. Addit. Manuf., 2021, 39: 101896
14 Hryha E, Shvab R, Bram M, et al. Surface chemical state of Ti powders and its alloys: Effect of storage conditions and alloy composition [J]. Appl. Surf. Sci., 2016, 388: 294
doi: 10.1016/j.apsusc.2016.01.046
15 Zhang Q, Zheng L, Yuan H, et al. Influence of storage conditions on powder surface state and hot deformation behavior of a powder metallurgy nickel-based superalloy [J]. Adv. Eng. Mater., 2022, 24: 2101615
doi: 10.1002/adem.v24.8
16 Zhang Q, Zheng L, Yuan H, et al. Effect of humid atmosphere on the microstructure and mechanical properties of a PM Ni-based superalloy: From powders to bulk alloys [J]. Mater. Charact., 2023, 202: 113019
doi: 10.1016/j.matchar.2023.113019
17 Whitman C A, O’Flynn J T, Rayner A J, et al. Determining the oxidation behavior of metal powders during heating through thermogravimetric and evolved gas analysis using a coupled thermogravimetry-gas chromatography-mass spectrometry technique [J]. Thermochim. Acta, 2016, 638: 124
doi: 10.1016/j.tca.2016.06.019
18 Estrada J L, Duszczyk J, Korevaar B M. Gas entrapment and evolution in prealloyed aluminium powders [J]. J. Mater. Sci., 1991, 26: 1431
doi: 10.1007/BF00544650
19 Yamasaki M, Kawamura Y. Changes in the surface characteristics of gas-atomized pure aluminum powder during vacuum degassing [J]. Mater. Trans., 2006, 47: 1902
doi: 10.2320/matertrans.47.1902
20 Iwamoto K, Yamasaki M, Kawamura Y. Vacuum degassing behavior of rapidly solidified Al-Mn-Zr alloy powders [J]. Mater. Sci. Eng., 2007, A449-451: 1013
21 Yamasaki M, Kawamura Y. Effect of vacuum degassing on surface characteristics of rapidly solidified Al-based alloy powders [J]. Mater. Trans., 2004, 45: 1335
doi: 10.2320/matertrans.45.1335
22 Nagaishi Y, Yamasaki M, Kawamura Y. Effect of process atmosphere on the mechanical properties of rapidly solidified powder metallurgy Al-Ti-Fe-Cr alloys [J]. Mater. Sci. Eng., 2007, A449-451: 794
23 Zhang Q, Zheng L, Yuan H, et al. Effects of composition and particle size on the surface state and degassing behavior of nickel-based superalloy powders [J]. Appl. Surf. Sci., 2021, 556: 149793
doi: 10.1016/j.apsusc.2021.149793
24 Luo X J, Zhang L C, Li Z, et al. The study on degassing behavior of nickel-base superalloy FGH96 powder [J]. Powder Metall. Ind., 2021, 31(4): 16
24 罗学军, 张利冲, 李 周 等. 镍基高温合金FGH96粉末脱气行为研究 [J]. 粉末冶金工业, 2021, 31(4): 16
25 Zheng L, Zhang G Q. Method of rapidly determining degassing process parameters for superalloy powders [P]. Chin Pat, 202110166125.1, 2021
25 郑 亮, 张国庆. 一种高温合金粉末除气工艺参数的快速确定方法 [P]. 中国专利, 202110166125.1, 2021
26 Zheng L, Zhang G Q, Gorley M J, et al. Effects of vacuum on gas content, oxide inclusions and mechanical properties of Ni-based superalloy using electron beam button and synchrotron diffraction [J]. Mater. Des., 2021, 207: 109861
doi: 10.1016/j.matdes.2021.109861
[1] 张乾坤, 胡小锋, 姜海昌, 戎利建. Si对一种9Cr铁素体/马氏体钢显微组织和力学性能的影响[J]. 金属学报, 2024, 60(9): 1200-1212.
[2] 周牧, 王倩, 王延绪, 翟梓融, 何伦华, 李昺, 马英杰, 雷家峰, 杨锐. 焊前预处理对钛合金厚板焊接残余应力的影响[J]. 金属学报, 2024, 60(8): 1064-1078.
[3] 孟玉佳, 席通, 杨春光, 赵金龙, 张新蕊, 于英杰, 杨柯. Ga添加对304L不锈钢力学性能和抗菌性能的影响[J]. 金属学报, 2024, 60(7): 890-900.
[4] 陈诚, 杨光昱, 金梦辉, 王强, 汤鑫, 程会民, 介万奇. 铸型正反转搅动对精密铸造K4169合金凝固组织和室温力学性能的影响[J]. 金属学报, 2024, 60(7): 926-936.
[5] 许仁杰, 屠鑫, 胡斌, 罗海文. Cu-V双合金化3Mn钢的组织和力学性能[J]. 金属学报, 2024, 60(6): 817-825.
[6] 谢丽文, 张立龙, 刘艳艳, 张明阳, 王绍钢, 焦大, 刘增乾, 张哲峰. 不锈钢纤维增强镁基仿生复合材料制备与力学性能[J]. 金属学报, 2024, 60(6): 760-769.
[7] 王郑, 王振玉, 汪爱英, 杨巍, 柯培玲. 微弧氧化时间对锆合金表面MAO/Cr复合涂层结构与性能的影响[J]. 金属学报, 2024, 60(5): 691-698.
[8] 汪建强, 刘威峰, 刘生, 徐斌, 孙明月, 李殿中. 700℃时效对9Cr ODS钢微观组织和力学性能的影响[J]. 金属学报, 2024, 60(5): 616-626.
[9] 曾立, 王桂兰, 张海鸥, 翟文正, 张勇, 张明波. 电弧微铸锻复合增材制造GH4169D高温合金的显微组织与力学性能[J]. 金属学报, 2024, 60(5): 681-690.
[10] 江浩文, 彭伟, 范增为, 汪杨鑫, 刘腾轼, 董瀚. Ag对奥氏体不锈钢组织和力学性能的影响[J]. 金属学报, 2024, 60(4): 434-442.
[11] 田滕, 查敏, 殷皓亮, 花珍铭, 贾海龙, 王慧远. 低温高应变量衬板控轧高固溶Al-Mg合金高强塑性与高热稳定性机制[J]. 金属学报, 2024, 60(4): 473-484.
[12] 张光莹, 李岩, 黄丽颖, 定巍. 连续屈服、高强屈比中锰钢的工艺设计与组织调控[J]. 金属学报, 2024, 60(4): 443-452.
[13] 杨杰, 黄森森, 尹慧, 翟瑞志, 马英杰, 向伟, 罗恒军, 雷家峰, 杨锐. 航空用TC21钛合金变截面模锻件的显微组织和力学性能不均匀性分析[J]. 金属学报, 2024, 60(3): 333-347.
[14] 胡宝佳, 郑沁园, 路轶, 贾春妮, 梁田, 郑成武, 李殿中. 冷轧中锰钢的再结晶调控及其对力学性能的影响[J]. 金属学报, 2024, 60(2): 189-200.
[15] 杨俊杰, 张昌盛, 李洪佳, 谢雷, 王虹, 孙光爱. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响[J]. 金属学报, 2024, 60(1): 30-42.