|
|
辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算 |
刘续希1, 柳文波1( ), 李博岩2, 贺新福3, 杨朝曦1, 恽迪1 |
1.西安交通大学 核科学与技术学院 西安 710049 2.清华大学 材料学院 北京 100084 3.中国原子能科学研究院 北京 102413 |
|
Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method |
LIU Xuxi1, LIU Wenbo1( ), LI Boyan2, HE Xinfu3, YANG Zhaoxi1, YUN Di1 |
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3.China Institute of Atomic Energy, Beijing 102413, China |
引用本文:
刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪. 辐照条件下Fe-Cu合金中富Cu析出相的临界形核尺寸和最小能量路径的弦方法计算[J]. 金属学报, 2022, 58(7): 943-955.
Xuxi LIU,
Wenbo LIU,
Boyan LI,
Xinfu HE,
Zhaoxi YANG,
Di YUN.
Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. Acta Metall Sin, 2022, 58(7): 943-955.
1 |
Li Z C, Chen L. Irradiation embrittlement mechanisms and relevant influence factors of nuclear reactor pressure vessel steels [J]. Acta Metall. Sin., 2014, 50: 1285
|
1 |
李正操, 陈 良. 核能系统压力容器辐照脆化机制及其影响因素 [J]. 金属学报, 2014, 50: 1285
doi: 10.11900/0412.1961.2014.00189
|
2 |
Klueh R L, Harries D R. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications [M]. West Conshohocken, PA: ASTM, 2001: 1
|
3 |
Grobner P J. The 885°F (475oC) embrittlement of ferritic stainless steels [J]. Metall. Trans., 1973, 4: 251
|
4 |
Sharma T, Bonagani S K, Kumar N N, et al. Detection of intergranular embrittlement of reactor pressure vessel steel by electrochemical method [J]. Mater. Sci. Eng., 2018, A725: 88
|
5 |
Bergner F, Gillemot F, Hernández-Mayoral M, et al. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels [J]. J. Nucl. Mater., 2015, 461: 37
doi: 10.1016/j.jnucmat.2015.02.031
|
6 |
Lambrecht M, Malerba L, Almazouzi A. Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels [J]. J. Nucl. Mater., 2008, 378: 282
doi: 10.1016/j.jnucmat.2008.06.030
|
7 |
Hernández-Mayoral M, Gómez-Briceño D. Transmission electron microscopy study on neutron irradiated pure iron and RPV model alloys [J]. J. Nucl. Mater., 2010, 399: 146
doi: 10.1016/j.jnucmat.2009.11.013
|
8 |
Ke H B, Wells P, Edmondson P D, et al. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels [J]. Acta Mater., 2017, 138: 10
doi: 10.1016/j.actamat.2017.07.021
|
9 |
Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
|
9 |
孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295
doi: 10.11900/0412.1961.2019.00440
|
10 |
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline system [J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003
|
11 |
Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
|
12 |
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
|
13 |
Yin B Y. Ceramic Nuclear Fuel Process [M]. Harbin: Harbin Engineering University Press, 2016: 277
|
13 |
尹邦跃. 陶瓷核燃料工艺 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 277
|
14 |
Molnar D, Mukherjee R, Choudhury A, et al. Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations [J]. Acta Mater., 2012, 60: 6961
doi: 10.1016/j.actamat.2012.08.051
|
15 |
Zhu J M, Zhang T L, Yang Y, et al. Phase field study of the copper precipitation in Fe-Cu alloy [J]. Acta Mater., 2019, 166: 560
doi: 10.1016/j.actamat.2019.01.009
|
16 |
Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
|
16 |
赵宝军, 赵宇宏, 孙远洋 等. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究 [J]. 金属学报, 2019, 55: 593
doi: 10.11900/0412.1961.2018.00506
|
17 |
Yan Z W, Shi S J, Li Y S, et al. Vacancy and interstitial atom evolution with the separation of the nanoscale phase in Fe-Cr alloys: Phase-field simulations [J]. Phys. Chem. Chem. Phys., 2020, 22: 3611
doi: 10.1039/C9CP06247E
|
18 |
Li B Y, Hu S Y, Li C L, et al. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 065007
|
19 |
Weinan E, Ren W Q, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events [J]. J. Chem. Phys., 2007, 126: 164103
doi: 10.1063/1.2720838
|
20 |
Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: Minimum free energy paths and isocommittor surfaces [J]. J. Chem. Phys., 2006, 125: 024106
|
21 |
Li B Y. Modelling and simulation in radiation induced defects in reactor pressure vessel steels [D]. Beijing: Tsinghua University, 2018
|
21 |
李博岩. 反应堆压力容器钢辐照损伤的计算模拟研究 [D]. 北京: 清华大学, 2018
|
22 |
Li B Y, Zhang L, Li C L, et al. Finding Non-classical critical nuclei and minimum energy path of Cu precipitates in Fe-Cu alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 085006
|
23 |
Zhang L, Chen L Q, Du Q. Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids [J]. J. Sci. Comput., 2008, 37: 89
doi: 10.1007/s10915-008-9207-7
|
24 |
Zhang L, Chen L Q, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations [J]. J. Comput. Phys., 2010, 229: 6574
doi: 10.1016/j.jcp.2010.05.013
|
25 |
Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations [J]. Comput. Phys. Commun., 1998, 108: 147
doi: 10.1016/S0010-4655(97)00115-X
|
26 |
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
|
27 |
Cahn J W, Hilliard J E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid [J]. J. Chem. Phys., 1959, 31: 688
doi: 10.1063/1.1730447
|
28 |
Biner S B. Programming Phase-Field Modeling [M]. Cham: Springer, 2017: 1
|
29 |
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
|
30 |
Peng H J, Xie Y Q, Liu S Q. Research on atomic states, physical properties and catalytic performance of Ru metal [J]. Sci. China, 2007, 50E: 177
|
31 |
Breeman M, Boerma D O. Migration of Cu adatoms on a Cu(100) surface, studied with low-energy ion scattering (LEIS) [J]. Surf. Sci., 1992, 269-270: 224
doi: 10.1016/0039-6028(92)91254-9
|
32 |
Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
|
33 |
Ke J H, Reese E R, Marquis E A, et al. Flux effects in precipitation under irradiation—Simulation of Fe-Cr alloys [J]. Acta Mater., 2018, 164: 586
doi: 10.1016/j.actamat.2018.10.063
|
34 |
Makin M J, Minter F J. Irradiation hardening in copper and nickel [J]. Acta Metall., 1960, 8: 691
doi: 10.1016/0001-6160(60)90200-5
|
35 |
Odette G R, Yamamoto T, Klingensmith D. On the effect of dose rate on irradiation hardening of RPV steels [J]. Philos. Mag., 2005, 85: 779
doi: 10.1080/14786430412331319910
|
36 |
Mohapatra J N, Kamada Y, Kikuchi H, et al. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy [J]. IEEE Trans. Magn., 2011, 47: 4356
doi: 10.1109/TMAG.2011.2155047
|
37 |
Nagano T, Enomoto M. Simulation of the growth of copper critical nucleus in dilute bcc Fe-Cu alloys [J]. Scr. Mater., 2006, 55: 223
doi: 10.1016/j.scriptamat.2006.04.015
|
38 |
Garcke H, Kwak D J C. On asymptotic limits of Cahn-Hilliard systems with elastic misfit [A]. Analysis, Modeling and Simulation of Multiscale Problems [M]. Berlin Heidelberg: Springer, 2006: 87
|
39 |
Koyama T, Onodera H. Computer simulation of phase decomposition in Fe-Cu-Mn-Ni quaternary alloy based on the phase-field method [J]. Metall. Trans., 2005, 46: 1187
|
40 |
Li Y L, Hu S Y, Zhang L, et al. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing [J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 025002
|
41 |
Zhang C, Enomoto M, Yamashita T, et al. Cu precipitation in a prestrained Fe-1.5 wt pct Cu alloy during isothermal aging [J]. Metall. Mater. Trans., 2004, 35A: 1263
|
42 |
Saridakis E. Optimization of the critical nuclear size for protein crystallization: A note [J]. Acta Cryst., 2000, D56: 106
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|