Please wait a minute...
金属学报  2022, Vol. 58 Issue (11): 1459-1466    DOI: 10.11900/0412.1961.2022.00274
  观点文章 本期目录 | 过刊浏览 |
有序异构功能材料
张海天1(), 张湘义2()
1.北京航空航天大学 材料科学与工程学院 北京 100191
2.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
Heterostructured Functional Materials with Ordered Structures
ZHANG Hai-Tian1(), ZHANG Xiangyi2()
1.School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
引用本文:

张海天, 张湘义. 有序异构功能材料[J]. 金属学报, 2022, 58(11): 1459-1466.
Hai-Tian ZHANG, Xiangyi ZHANG. Heterostructured Functional Materials with Ordered Structures[J]. Acta Metall Sin, 2022, 58(11): 1459-1466.

全文: PDF(1972 KB)   HTML
摘要: 

异构材料旨在构筑不同尺寸的结构或功能基元,通过基元间的协同耦合效应来解决材料基本特性相互冲突的问题和提高材料性能。虽然该理念已被成功地用来解决材料的强度-塑性之间的倒置关系和产生优异的力学性能,但在功能材料应用方面还处于探索初期。在无序异构材料的基础上,将不同尺寸的基元如晶粒、相或畴结构等进行有序排列,可以增强基元间的耦合效应,进一步提高材料的性能,甚至产生变革性的新功能。本观点文章以永磁材料为例,简要介绍了有序异构功能材料中新的物理机制和增强的性能,讨论了异构材料中功能基元的有序化所产生的高性能或变革性的、全新的功能特性。

关键词 异构材料有序异构材料功能材料功能基元有序微结构    
Abstract

Heterostructured materials (HSMs) can be created by introducing differently sized constituent components to enhance their performance by disentangling conflicting materials' properties, through the synergistic coupling effect of the constituents. This strategy has been successfully applied to structural materials to overcome the trade-off between strength and ductility and achieve superior mechanical properties; however, it remains less explored for functional materials. Beyond the random distribution of the constituents in HSMs, the ordering of constituents, e.g., grains, phases, and domain structures, can further enhance their coupling effect, thus leading to improved material properties or even transformative new functionalities. In this short perspective article, permanent magnetic materials are used as examples to review the recent progress in achieving enhanced properties and/or creating new physical mechanisms by building HSMs with ordered structures. This paper demonstrates that high-performance or revolutionary functional materials can be achieved by creating ordered HSMs.

Key wordsheterostructured material    ordered heterostructured material    functional material    functional unit    ordered microstructure
收稿日期: 2022-06-01     
ZTFLH:  TB34  
基金资助:国家重点研发计划项目(2021YFB3500302);国家自然科学基金项目(51931007);国家自然科学基金项目(51971196);国家自然科学基金项目(52071279)
作者简介: 张湘义, xyzh66@ysu.edu.cn,主要从事纳米磁性材料和序构功能材料研究
张海天,男,1989年生,教授,博士
图1  典型的有序异构功能材料微结构示意图[12,13]
图2  原子尺度序构(成分梯度)对2∶17型SmCo异构磁体性能的影响[17,18]
图3  纳米尺度NdFeB/α-Fe核-壳有序结构的TEM和HRTEM像及其导致的高矫顽力(Hc)和高剩磁(Br)的结合[13]
图4  纳米尺度晶粒尺寸序构导致的定向磁化反转及其对NdFeB/α-Fe纳米复合磁体磁性增强的影响[12]
图5  微米尺度层状序构引发的多步钉扎磁化机制及其对纳米复合永磁材料磁能积增强的作用[19]
1 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
2 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
3 Zhang X Y. Heterostructures: New opportunities for functional materials [J]. Mater. Res. Lett., 2020, 8: 49
doi: 10.1080/21663831.2019.1691668
4 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
5 Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905 pmid: 31123122
6 Li X H, Lou L, Song W P, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products [J]. Adv. Mater., 2017, 29: 1606430
doi: 10.1002/adma.201606430
7 Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures [J]. Nature, 2012, 489: 414
doi: 10.1038/nature11439
8 Shen K, Zhang L, Chen X D, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359: 206
doi: 10.1126/science.aao3403 pmid: 29326271
9 Zhang H T, Zhang X Y. Strong magnets with ordered structures [J]. Mater. Res. Lett., 2022, 10: 1
doi: 10.1080/21663831.2021.2008541
10 Zhang H T, Park T J, Islam A N M N, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence [J]. Science, 2022, 375: 533
doi: 10.1126/science.abj7943
11 National Science Foundation of China. 2019 annual project guide for the major research program for basic research of high-performance materials with ordered functional primitive structure[EB/OL]. (2019-08-16).
11 国家自然科学基金委员会. 功能基元序构的高性能材料基础研究重大研究计划2019年度项目指南 [EB/OL]. (2019-08-16).
12 Lou L, Li Y Q, Li X H, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures [J]. Adv. Mater., 2021, 33: 2102800
doi: 10.1002/adma.202102800
13 Li H L, Li X H, Guo D F, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets [J]. Nano Lett., 2016, 16: 5631
doi: 10.1021/acs.nanolett.6b02210 pmid: 27570896
14 Sellmyer D J. Strong magnets by self-assembly [J]. Nature, 2002, 420: 374
doi: 10.1038/420374a
15 Jones N. Materials science: The pull of stronger magnets [J]. Nature, 2011, 472: 22
doi: 10.1038/472022a
16 Li X H, Lou L, Song W P, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products [J]. Nano Lett., 2017, 17: 2985
doi: 10.1021/acs.nanolett.7b00264 pmid: 28402670
17 Yan A, Gutfleisch O, Gemming T, et al. Microchemistry and magnetization reversal mechanism in melt-spun 2∶17-type Sm-Co magnets [J]. Appl. Phys. Lett., 2003, 83: 2208
doi: 10.1063/1.1611641
18 Sepehri-Amin H, Thielsch J, Fischbacher J, et al. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets [J]. Acta Mater., 2017, 126: 1
doi: 10.1016/j.actamat.2016.12.050
19 Huang G W, Li X H, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density [J]. Small, 2018, 14: 1800619
doi: 10.1002/smll.201800619
20 Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
21 Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 [J]. Science, 2021, 371: 722
doi: 10.1126/science.abb3517 pmid: 33574210
22 Chen Q X, Liu Y H, Qi X Z, et al. Ordered nanostructure enhances electrocatalytic performance by directional micro-electric field [J]. J. Am. Chem. Soc., 2019, 141: 10729
doi: 10.1021/jacs.9b03617
23 Li J Z, Sharma N, Jiang Z S, et al. Dynamics of particle network in composite battery cathodes [J]. Science, 2022, 376: 517
doi: 10.1126/science.abm8962 pmid: 35482882
24 Begley M R, Gianola D S, Ray T R. Bridging functional nanocomposites to robust macroscale devices [J]. Science, 2019, 364: eaav4299
doi: 10.1126/science.aav4299
25 Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090 pmid: 18219332
26 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
[1] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[3] 张海鸥 王超 王桂兰. 外磁场下MIG焊梯度功能材料制备模拟及实验研究[J]. 金属学报, 2011, 47(9): 1221-1226.
[4] 许富民; 齐民; 朱世杰; 赵杰; 王富岗 . SiC颗粒增强铝基梯度复合材料的制备与性能[J]. 金属学报, 2002, 38(9): 998-1001 .
[5] 王浩伟;商宝禄;周尧和. 纤维多功能梯度涂层及其应用[J]. 金属学报, 1993, 29(11): 91-96.