|
|
有序异构功能材料 |
张海天1( ), 张湘义2( ) |
1.北京航空航天大学 材料科学与工程学院 北京 100191 2.燕山大学 亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004 |
|
Heterostructured Functional Materials with Ordered Structures |
ZHANG Hai-Tian1( ), ZHANG Xiangyi2( ) |
1.School of Materials Science and Engineering, Beihang University, Beijing 100191, China 2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China |
引用本文:
张海天, 张湘义. 有序异构功能材料[J]. 金属学报, 2022, 58(11): 1459-1466.
Hai-Tian ZHANG,
Xiangyi ZHANG.
Heterostructured Functional Materials with Ordered Structures[J]. Acta Metall Sin, 2022, 58(11): 1459-1466.
1 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
2 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
3 |
Zhang X Y. Heterostructures: New opportunities for functional materials [J]. Mater. Res. Lett., 2020, 8: 49
doi: 10.1080/21663831.2019.1691668
|
4 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
5 |
Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905
pmid: 31123122
|
6 |
Li X H, Lou L, Song W P, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products [J]. Adv. Mater., 2017, 29: 1606430
doi: 10.1002/adma.201606430
|
7 |
Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures [J]. Nature, 2012, 489: 414
doi: 10.1038/nature11439
|
8 |
Shen K, Zhang L, Chen X D, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359: 206
doi: 10.1126/science.aao3403
pmid: 29326271
|
9 |
Zhang H T, Zhang X Y. Strong magnets with ordered structures [J]. Mater. Res. Lett., 2022, 10: 1
doi: 10.1080/21663831.2021.2008541
|
10 |
Zhang H T, Park T J, Islam A N M N, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence [J]. Science, 2022, 375: 533
doi: 10.1126/science.abj7943
|
11 |
National Science Foundation of China. 2019 annual project guide for the major research program for basic research of high-performance materials with ordered functional primitive structure[EB/OL]. (2019-08-16).
|
11 |
国家自然科学基金委员会. 功能基元序构的高性能材料基础研究重大研究计划2019年度项目指南 [EB/OL]. (2019-08-16).
|
12 |
Lou L, Li Y Q, Li X H, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures [J]. Adv. Mater., 2021, 33: 2102800
doi: 10.1002/adma.202102800
|
13 |
Li H L, Li X H, Guo D F, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets [J]. Nano Lett., 2016, 16: 5631
doi: 10.1021/acs.nanolett.6b02210
pmid: 27570896
|
14 |
Sellmyer D J. Strong magnets by self-assembly [J]. Nature, 2002, 420: 374
doi: 10.1038/420374a
|
15 |
Jones N. Materials science: The pull of stronger magnets [J]. Nature, 2011, 472: 22
doi: 10.1038/472022a
|
16 |
Li X H, Lou L, Song W P, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products [J]. Nano Lett., 2017, 17: 2985
doi: 10.1021/acs.nanolett.7b00264
pmid: 28402670
|
17 |
Yan A, Gutfleisch O, Gemming T, et al. Microchemistry and magnetization reversal mechanism in melt-spun 2∶17-type Sm-Co magnets [J]. Appl. Phys. Lett., 2003, 83: 2208
doi: 10.1063/1.1611641
|
18 |
Sepehri-Amin H, Thielsch J, Fischbacher J, et al. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets [J]. Acta Mater., 2017, 126: 1
doi: 10.1016/j.actamat.2016.12.050
|
19 |
Huang G W, Li X H, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density [J]. Small, 2018, 14: 1800619
doi: 10.1002/smll.201800619
|
20 |
Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
|
21 |
Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 [J]. Science, 2021, 371: 722
doi: 10.1126/science.abb3517
pmid: 33574210
|
22 |
Chen Q X, Liu Y H, Qi X Z, et al. Ordered nanostructure enhances electrocatalytic performance by directional micro-electric field [J]. J. Am. Chem. Soc., 2019, 141: 10729
doi: 10.1021/jacs.9b03617
|
23 |
Li J Z, Sharma N, Jiang Z S, et al. Dynamics of particle network in composite battery cathodes [J]. Science, 2022, 376: 517
doi: 10.1126/science.abm8962
pmid: 35482882
|
24 |
Begley M R, Gianola D S, Ray T R. Bridging functional nanocomposites to robust macroscale devices [J]. Science, 2019, 364: eaav4299
doi: 10.1126/science.aav4299
|
25 |
Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090
pmid: 18219332
|
26 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|