Please wait a minute...
金属学报  2021, Vol. 57 Issue (5): 605-612    DOI: 10.11900/0412.1961.2020.00247
  研究论文 本期目录 | 过刊浏览 |
45钢块体超细晶棒材3D-SPD轧制法
林鹏程1,2, 庞玉华1,2(), 孙琦1,2, 王航舵1,2, 刘东3, 张喆3
1.西安建筑科技大学 冶金工程学院 西安 710055
2.西安建筑科技大学 陕西省冶金工程技术研究中心 西安 710055
3.西北工业大学 材料学院 西安 710072
3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size
LIN Pengcheng1,2, PANG Yuhua1,2(), SUN Qi1,2, WANG Hangduo1,2, LIU Dong3, ZHANG Zhe3
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Shaanxi Metallurgical Engineering Technology Research Center, Xi'an University of Architecture and Technology, Xi'an 710055, China
3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
Pengcheng LIN, Yuhua PANG, Qi SUN, Hangduo WANG, Dong LIU, Zhe ZHANG. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. Acta Metall Sin, 2021, 57(5): 605-612.

全文: PDF(6823 KB)   HTML
摘要: 

提出了一种基于斜轧原理的块体超细晶棒材剧烈塑性变形(SPD)成形法,称为3D-SPD法:利用特殊曲面锥形轧辊及导板,坯料从轧辊直径最大端咬入,采用超大送进角及径缩率等变形参数,构建了剧烈扭转压缩复合变形区,单位成形载荷为兆帕级,可实现块体等效应变大于6.5的SPD。建立了基于Oyane损伤准则的裂纹萌生控制模型,通过对不同变形条件下轧件心部损伤值的优化,有效抑制了Mannesmann效应(ME),避免了裂纹的萌生。理论及实验证明:当辊面锥角5°、送进角24°、径缩率50%、温度700℃、椭圆度系数1.02以及轧辊转速40 r/min时,采用单道次轧制方式,可将直径50 mm的45钢轧制为直径25 mm的超细晶棒材,平均晶粒尺寸从46 μm细化至约1 μm,屈服强度和抗拉强度分别提升46%和42%。

关键词 剧烈塑性变形超细晶棒材3D-SPDMannesmann效应剧烈扭转压缩复合变形区    
Abstract

Based on the limitations of severe plastic deformation (SPD) technology, such as a small effective deformation area and huge forming load, in the preparation of ultrafine grained/nanocrystalline materials, preparing industrial grade bulk ultrafine grained materials is difficult. In this work, a new SPD method, titled 3D-SPD, for preparing bulk ultrafine grained bars is proposed based on the cross-rolling principle. A severe torsion and compression deformation region was constructed using specially-curved conical rolls and guide plates, super large feed angles, and diameter reduction ratios. During the 3D-SPD process, a billet entered the deformation region from the large diameter side of the roll, where the deformation pressure was MPa grade and able to realize the SPD process with effective strains greater than 6.5. A crack control model based on Oyane criteria was established. Through the optimization analysis of damage factors under different deformation conditions, the crack induced by the Mannesmann effect was effectively restrained. Based on theoretical and experimental results, optimal parameters were determined as follows: cone angle 5°, feed angle 24°, diameter reduction ratio 50%, temperature 700oC, ovality coefficient 1.02, and roll speed 40 r/min. A 25 mm-diameter ultrafine grained bar of 45 steel was obtained by the single pass deformation. The average grain size was refined from 46 μm to 1 μm, and the yield and tensile strengths were increased by 46% and 42%, respectively.

Key wordssevere plastic deformation    ultrafine grained bar    3D-SPD    Mannesmann effect    severe torsion and compression deformation region
收稿日期: 2020-07-09     
ZTFLH:  TG146.23  
基金资助:陕西省重点研发计划项目(2020GY-253)
作者简介: 林鹏程,男,1994年生,硕士生
图1  3D-SPD有限元模型示意图
图2  3D-SPD与传统斜轧法变形区对比图
Processα / (°)β / (°)Reduction rate / %Ovality factor
3D-SPD4-620-2435-551.02-1.05
Traditional cross-rolling[26]1-38-15±5-101.10-1.20
表1  3D-SPD与传统斜轧法工艺参数[26]对比
图3  传统斜轧与3D-SPD制备的试样的损伤值计算结果及纵截面形貌
图4  传统纵轧与3D-SPD等效应变对比
图5  传统斜轧与3D-SPD扭转角对比
图6  传统纵轧与3D-SPD轧制负荷对比
图7  3D-SPD等效应变及等效应变随时间的变化
图8  3D-SPD温度分布
图9  自制3D-SPD试验机及轧后45钢棒材
图10  45钢轧制前后的显微组织
图11  45钢轧制前后的拉伸应力-应变曲线
1 Sabbaghianrad S, Langdon T G. A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT [J]. Mater. Sci. Eng., 2014, A596: 52
2 Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
3 Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 1999, 40: 795
4 Estrin Y. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Mater., 2013, 61: 782
5 Reshetov A, Kulagin R, Korshunov A, et al. The occurrence of ideal plastic state in CP titanium processed by twist extrusion [J]. Adv. Eng. Mater., 2018, 20: 1700899
6 Beygelzimer Y, Orlov D. Metal plasticity during the twist extrusion [J]. Defect Diffus. Forum, 2002, 208-209: 311
7 Pang Y H, Lin P C, Kang D N, et al. Equidistant screw rolling method for large-size 45 steel superfine crystal bar [P]. Chin Pat, 10172304.4, 2018
7 庞玉华, 林鹏程, 康荻娜等. 一种大尺寸45钢超细晶棒材的等距螺旋轧制方法 [P]. 中国专利, 10172304.4, 2018)
8 Liu D, Pang Y H, Tao B. A 3D-SPD ultrafine grained bar forming method of F+P type non-quenched and tempered steel [P]. Chin Pat, 10809863.9, 2020
8 刘 东, 庞玉华, 陶 镳. 一种F+P型非调质钢的3D-SPD超细晶棒材成形方法 [P]. 中国专利, 10809863.9, 2020)
9 Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
10 Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic working of metals by simple shear [J]. Russ. Metall., 1981, 1: 99
11 Segal V M. Materials processing by simple shear [J]. Mater. Sci. Eng., 1995, A197: 157
12 Segal V M. Severe plastic deformation: simple shear versus pure shear [J]. Mater. Sci. Eng., 2002, A338: 331
13 Segal V M. Slip line solutions, deformation mode and loading history during equal channel angular extrusion [J]. Mater. Sci. Eng., 2003, A345: 36
14 Segal V M. Deformation mode and plastic flow in ultra fine grained metals [J]. Mater. Sci. Eng., 2005, A406: 205
15 Valiev R Z, Zhilyaev A P, Langdon T G. Bulk Nanostructured Materials: Fundamentals and Applications [M]. Hoboken: John Wiley & Sons, 2013: 191
16 Vaughan M W, Samimi P, Gibbons S L, et al. Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing [J]. Scr. Mater., 2020, 184: 63
17 Yoon S C, Seo M H, Kim H S. Preform effect on the plastic deformation behavior of workpieces in equal channel angular pressing [J]. Scr. Mater., 2006, 55: 159
18 Bridgman P W. On torsion combined with compression [J]. J. Appl. Phys., 1943, 14: 273
19 Edalati K, Daio T, Arita M, et al. High-pressure torsion of titanium at cryogenic and room temperatures: Grain size effect on allotropic phase transformations [J]. Acta Mater., 2014, 68: 207
20 Fu J, Ding H, Huang Y, et al. Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion [J]. J. Mater. Res., 2015, 4: 2
21 Todaka Y, Umemoto M, Yamazaki A, et al. Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum [J]. Mater. Trans., 2008, 49: 7
22 Park J, Song D H, Lee D, et al. Grain refinement of medium carbon steel with controlled thermo-mechanical deformation [A]. Ultrafine Grained Materials II [M]. Hoboken: John Wiley & Sons, Ltd, 2013: 275
23 Liu B X, Fan K Y, Yin F X, et al. Effect of caliber rolling reduction ratios on the microstructure and mechanical properties of 45 medium carbon steel [J]. Mater. Sci. Eng., 2020, A774: 138954
24 Jia N N, Guo K, He Y M, et al. A thermomechanical process to achieve mechanical properties comparable to those of quenched-tempered medium-C steel [J]. Mater. Sci. Eng., 2017, A700: 175
25 Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications [J]. J. Mech. Working Technol., 1980, 4: 65
26 Wang T P, Qi K M. Metal Plastic Processing [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2001: 132
26 王廷溥, 齐克敏. 金属塑性加工学 [M]. 第2版,北京: 冶金工业出版社, 2001: 132
27 Liu W C. Research on large-bar continuous rolling process and rolling model [J]. CFHI Technol., 2016, (5): 54
27 刘万忱. 大规格棒材连轧工艺及轧制模型研究 [J]. 一重技术, 2016, (5): 54
28 Shi X S. Numerical simulation study on ultra-fine grained rod rolling of medium carbon steel [D]. Qinhuangdao: Yanshan University, 2013
28 史喜帅. 中碳钢超微细晶棒材轧制数值模拟研究 [D]. 秦皇岛: 燕山大学, 2013
29 Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
[1] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.