|
|
45钢块体超细晶棒材3D-SPD轧制法 |
林鹏程1,2, 庞玉华1,2( ), 孙琦1,2, 王航舵1,2, 刘东3, 张喆3 |
1.西安建筑科技大学 冶金工程学院 西安 710055 2.西安建筑科技大学 陕西省冶金工程技术研究中心 西安 710055 3.西北工业大学 材料学院 西安 710072 |
|
3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size |
LIN Pengcheng1,2, PANG Yuhua1,2( ), SUN Qi1,2, WANG Hangduo1,2, LIU Dong3, ZHANG Zhe3 |
1.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2.Shaanxi Metallurgical Engineering Technology Research Center, Xi'an University of Architecture and Technology, Xi'an 710055, China 3.School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China |
引用本文:
林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
Pengcheng LIN,
Yuhua PANG,
Qi SUN,
Hangduo WANG,
Dong LIU,
Zhe ZHANG.
3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. Acta Metall Sin, 2021, 57(5): 605-612.
1 |
Sabbaghianrad S, Langdon T G. A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT [J]. Mater. Sci. Eng., 2014, A596: 52
|
2 |
Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
|
3 |
Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 1999, 40: 795
|
4 |
Estrin Y. Extreme grain refinement by severe plastic deformation: A wealth of challenging science [J]. Acta Mater., 2013, 61: 782
|
5 |
Reshetov A, Kulagin R, Korshunov A, et al. The occurrence of ideal plastic state in CP titanium processed by twist extrusion [J]. Adv. Eng. Mater., 2018, 20: 1700899
|
6 |
Beygelzimer Y, Orlov D. Metal plasticity during the twist extrusion [J]. Defect Diffus. Forum, 2002, 208-209: 311
|
7 |
Pang Y H, Lin P C, Kang D N, et al. Equidistant screw rolling method for large-size 45 steel superfine crystal bar [P]. Chin Pat, 10172304.4, 2018
|
7 |
庞玉华, 林鹏程, 康荻娜等. 一种大尺寸45钢超细晶棒材的等距螺旋轧制方法 [P]. 中国专利, 10172304.4, 2018)
|
8 |
Liu D, Pang Y H, Tao B. A 3D-SPD ultrafine grained bar forming method of F+P type non-quenched and tempered steel [P]. Chin Pat, 10809863.9, 2020
|
8 |
刘 东, 庞玉华, 陶 镳. 一种F+P型非调质钢的3D-SPD超细晶棒材成形方法 [P]. 中国专利, 10809863.9, 2020)
|
9 |
Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
|
10 |
Segal V M, Reznikov V I, Drobyshevskiy A E, et al. Plastic working of metals by simple shear [J]. Russ. Metall., 1981, 1: 99
|
11 |
Segal V M. Materials processing by simple shear [J]. Mater. Sci. Eng., 1995, A197: 157
|
12 |
Segal V M. Severe plastic deformation: simple shear versus pure shear [J]. Mater. Sci. Eng., 2002, A338: 331
|
13 |
Segal V M. Slip line solutions, deformation mode and loading history during equal channel angular extrusion [J]. Mater. Sci. Eng., 2003, A345: 36
|
14 |
Segal V M. Deformation mode and plastic flow in ultra fine grained metals [J]. Mater. Sci. Eng., 2005, A406: 205
|
15 |
Valiev R Z, Zhilyaev A P, Langdon T G. Bulk Nanostructured Materials: Fundamentals and Applications [M]. Hoboken: John Wiley & Sons, 2013: 191
|
16 |
Vaughan M W, Samimi P, Gibbons S L, et al. Exploring performance limits of a new martensitic high strength steel by ausforming via equal channel angular pressing [J]. Scr. Mater., 2020, 184: 63
|
17 |
Yoon S C, Seo M H, Kim H S. Preform effect on the plastic deformation behavior of workpieces in equal channel angular pressing [J]. Scr. Mater., 2006, 55: 159
|
18 |
Bridgman P W. On torsion combined with compression [J]. J. Appl. Phys., 1943, 14: 273
|
19 |
Edalati K, Daio T, Arita M, et al. High-pressure torsion of titanium at cryogenic and room temperatures: Grain size effect on allotropic phase transformations [J]. Acta Mater., 2014, 68: 207
|
20 |
Fu J, Ding H, Huang Y, et al. Influence of phase volume fraction on the grain refining of a Ti-6Al-4V alloy by high-pressure torsion [J]. J. Mater. Res., 2015, 4: 2
|
21 |
Todaka Y, Umemoto M, Yamazaki A, et al. Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum [J]. Mater. Trans., 2008, 49: 7
|
22 |
Park J, Song D H, Lee D, et al. Grain refinement of medium carbon steel with controlled thermo-mechanical deformation [A]. Ultrafine Grained Materials II [M]. Hoboken: John Wiley & Sons, Ltd, 2013: 275
|
23 |
Liu B X, Fan K Y, Yin F X, et al. Effect of caliber rolling reduction ratios on the microstructure and mechanical properties of 45 medium carbon steel [J]. Mater. Sci. Eng., 2020, A774: 138954
|
24 |
Jia N N, Guo K, He Y M, et al. A thermomechanical process to achieve mechanical properties comparable to those of quenched-tempered medium-C steel [J]. Mater. Sci. Eng., 2017, A700: 175
|
25 |
Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications [J]. J. Mech. Working Technol., 1980, 4: 65
|
26 |
Wang T P, Qi K M. Metal Plastic Processing [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2001: 132
|
26 |
王廷溥, 齐克敏. 金属塑性加工学 [M]. 第2版,北京: 冶金工业出版社, 2001: 132
|
27 |
Liu W C. Research on large-bar continuous rolling process and rolling model [J]. CFHI Technol., 2016, (5): 54
|
27 |
刘万忱. 大规格棒材连轧工艺及轧制模型研究 [J]. 一重技术, 2016, (5): 54
|
28 |
Shi X S. Numerical simulation study on ultra-fine grained rod rolling of medium carbon steel [D]. Qinhuangdao: Yanshan University, 2013
|
28 |
史喜帅. 中碳钢超微细晶棒材轧制数值模拟研究 [D]. 秦皇岛: 燕山大学, 2013
|
29 |
Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation [J]. Prog. Mater. Sci., 2000, 45: 103
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|