Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 485-489    
  论文 本期目录 | 过刊浏览 |
高拉速板坯连铸结晶器液态渣消耗机理分析
孟祥宁;朱苗勇
东北大学材料与冶金学院; 沈阳 110004
ANALYSIS OF LIQUID FLUX CONSUMPTION MECHANISM FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED
MENG Xiangning; ZHU Miaoyong
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
引用本文:

孟祥宁 朱苗勇. 高拉速板坯连铸结晶器液态渣消耗机理分析[J]. 金属学报, 2009, 45(4): 485-489.
, . ANALYSIS OF LIQUID FLUX CONSUMPTION MECHANISM FOR SLAB CONTINUOUS CASTING MOLD WITH HIGH CASTING SPEED[J]. Acta Metall Sin, 2009, 45(4): 485-489.

全文: PDF(1190 KB)  
摘要: 

基于弯月面渣道压力计算, 分析2.0 m/min高拉速下板坯连铸结晶器振动周期内初凝坯壳变形行为, 提出新的液态渣消耗机制, 并定义了渣耗时间和渣耗强度的概念, 阐明了结晶器非正弦振动参数对液态渣渣耗量影响规律. 研究表明: 渣道宽度变化引起渣道压力改变导致液态渣周期性持续消耗, 振动正滑脱末期至负滑脱末期渣道负压抽吸液态渣进入渣道; 降低振频延长了液态渣渣耗时间, 但使渣耗强度削弱; 提高振幅可加大渣耗强度, 对渣耗时间影响很小; 非正弦振动因子对渣耗强度影响较小, 渣耗时间随非正弦振动因子减小而增大.

关键词 连铸结晶器 高拉速 非正弦振动 液态渣消耗    
Abstract

Liquid flux is an effective lubrication in the conventional continuous casting of steel, which can prevent the breakout effectively, and also the longitudinal cracks that occur on strand surface are decreased obviously. Previously, many studies have been reported on the flux infiltration, some empirical equations for calculating flux consumption have been reported based on the data accumulated through the commercial operation of casters, and the new tools and techniques for estimating the lubrication condition in mold have also been introduced. Especially, the lubrication mechanism of liquid flux has drawn general concerns recently, and some relevant simulation of flux infiltration behavior based on the cold model experiments and mathematical models of flux infiltration derived from theoretical calculations have been conducted. Most of these researches lay particular emphasis on the macroscopical detection and calculation to the infiltration behavior, and some researches related to micro–mechanism lack the discussion of the relevant influence factor yet. In the present work, on the basis of calculation of liquid flux channel pressure in meniscus for slab continuous casting mold, a new mechanism of the liquid flux consumption was proposed by analyzing the deformation behavior of initial solidifying shell during the mold oscillation cycle as high casting speed 2.0 m/min, and the concepts of infiltration time and infiltration intensity were defined for the first time, then the effect of non–sinusoidal oscillation parameters on the liquid flux consumption was discussed. The results show that the periodically continued liquid flux consumption is caused by variety of flux channel pressure which is induced by change of channel width, and the liquid flux will be infiltrated into flux channel from last stage of positive strip time until last stage of negative strip time by negative flux channel pressure. The infiltration time is lengthened and the infiltration intensity is weakened by reducing oscillation frequency. The infiltration intensity is strengthened by improving amplitude, and the infiltration time is slimly influenced. Non–sinusoidal oscillation factor has a little effect on the infiltration intensity, and the infiltration time is increased with the oscillation factor decreasing.

Key wordscontinuous casting mold    high casting speed    non--sinusoidal oscillation    liquid flux consumption
收稿日期: 2008-09-09     
ZTFLH: 

TF777

 
基金资助:

国家高技术研究发展计划项目2005AA331020, 新世纪优秀人才支持计划项目NCET--04--0285, 中国博士后科学基金项目20080441090和东北大学博士后科研基金项目20080306资助

作者简介: 孟祥宁, 男, 1977年生, 博士后

[1] Suzuki M, Mizukami H, Kitagawa T, Kawakami K, Uchida S, Komatsu Y. ISIJ Int, 1991; 31: 254
[2] Thomas B G. 74th Steelmaking Conference Proceedings, 1991: 105
[3] Kwon O D, Choi J, Lee I R, Kim J W, Moon K H, Shin Y K. 74th Steelmaking Conference Proceedings, 1991: 561
[4] Wolf M M. 74th Steelmaking Conference Proceedings, 1991: 51
[5] Zhang H B, Wang H Z. Iron Steel, 1995; 30(11): 17
(张洪波, 王海之. 钢铁, 1995; 30(11): 17)
[6] Okazawa K, Kajitani T, Yamada W, Yamamura H. ISIJ Int, 2006; 46: 226
[7] Kajitani T, Okazawa K, Yamada W, Yamamura H. ISIJ Int, 2006; 46: 1432
[8] Meng Y, Thomas B G. Metall Mater Trans, 2003; 34B: 685
[9] Meng Y, Thomas B G. ISIJ Int, 2006; 46: 660
[10] Zhang J M, Zhang L, Wang X H, Wang L F. Acta Metall Sin, 2003; 39: 1285
(张炯明, 张 立, 王新华, 王立峰. 金属学报, 2003; 39: 1285)
[11] Meng X N, Zhu M Y, Cheng N L. Acta Metall Sin, 2007; 43: 839
(孟祥宁, 朱苗勇, 程乃良. 金属学报, 2007; 43: 839)
[12] Meng X N, Zhu M Y, Liu X D, Cheng N L, Jiang Z K. Acta Metall Sin, 2007; 43: 205
(孟祥宁, 朱苗勇, 刘旭东, 程乃良, 江中块. 金属学报, 2007; 43: 205)
[13] Meng X N, Zhu M Y. Chin Mech Eng, 2007; 18: 1779
(孟祥宁, 朱苗勇. 中国机械工程, 2007; 18: 1779)
[14] Schwerdtfeger K, Sha H. Metall Mater Trans, 2000; 31B: 813
[15] Szekeres E S. Iron Steel Eng, 1996; 73: 29
[16] Okazawa K, Kajitani T, Yamada W, Yamamura H. ISIJ Int, 2006; 46: 234
[17] Shin H J, Kim S H, Thomas B G, Lee G G, Park J M, Sengupta J. ISIJ Int, 2006; 46: 1635
[18] Meng X N, Zhu M Y. J Iron Steel Res, 2007; 19(7): 19
(孟祥宁, 朱苗勇. 钢铁研究学报, 2007; 19(7): 19)

[1] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[2] 刘中秋,李宝宽,姜茂发,张立,徐国栋. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究[J]. 金属学报, 2013, 49(5): 513-522.
[3] 陈芝会 王恩刚 张兴武 王元华 朱明伟 赫冀成. 行波磁场下吹Ar过程中结晶器内气泡行为的研究[J]. 金属学报, 2012, 48(8): 951-956.
[4] 李宝宽 刘中秋 齐凤升 王芳 徐国栋. 薄板坯连铸结晶器非稳态湍流大涡模拟研究[J]. 金属学报, 2012, 48(1): 23-32.
[5] 于湛 张振强 任忠鸣 雷作胜 邓康. 板坯电磁制动结晶器内流体流动的研究[J]. 金属学报, 2010, 46(10): 1275-1280.
[6] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[7] 于海岐; 朱苗勇 . 板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J]. 金属学报, 2008, 44(5): 619-625 .
[8] 孟祥宁; 朱苗勇 . 高拉速板坯连铸结晶器液体摩擦机理分析[J]. 金属学报, 2008, 44(10): 1193-1197 .
[9] 曹娜; 朱苗勇 . 高拉速板坯连铸结晶器内钢/渣界面行为的数值模拟[J]. 金属学报, 2007, 43(8): 834-838 .
[10] 孟祥宁; 朱苗勇; 程乃良 . 高拉速下连铸坯振痕形成机理及振动参数优化[J]. 金属学报, 2007, 43(8): 839-846 .
[11] 孟祥宁; 朱苗勇; 刘旭东; 程乃良; 江中块 . 高拉速连铸结晶器非正弦振动因子研究[J]. 金属学报, 2007, 43(2): 205-210 .
[12] 郭亮亮; 姚曼; 尹合壁; 王旭东; 方大成; 刘晓 ; 于艳 . 连铸圆坯结晶器的热流计算与讨论[J]. 金属学报, 2006, 42(9): 983-988 .
[13] 张胜军; 朱苗勇; 张永亮; 郑淑国; 程乃良; 宋景欣 . 高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J]. 金属学报, 2006, 42(10): 1087-1090 .
[14] 尹合壁; 姚曼 . 圆坯连铸结晶器传热的反算法[J]. 金属学报, 2005, 41(6): 638-644 .
[15] 钱忠东; 吴玉林 . 连铸结晶器内钢液涡流现象的大涡模拟及控制[J]. 金属学报, 2004, 40(1): 88-93 .