Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1261-1266    
  论文 本期目录 | 过刊浏览 |
Si粉表面溶胶-凝胶预处理制备Cu/Si复合材料
蔡辉1;王菲1;王亚平1;宋晓平1;丁秉钧1;2
1. 西安交通大学理学院物质非平衡合成与调控教育部重点实验室; 西安 710049
2. 西安交通大学金属材料强度国家重点实验室; 西安 710049
FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS
CAI Hui 1; WANG Fei 1; WANG Yaping1; SONG Xiaoping1; DING Bingjun1;2
1. MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter;  School of Science; Xi'an Jiaotong University; Xi'an 710049
2. State Key Laboratory for Mechanical Behavior of Materials; Xi'an Jiaotong University; Xi'an 710049
引用本文:

蔡辉 王菲 王亚平 宋晓平 丁秉钧. Si粉表面溶胶-凝胶预处理制备Cu/Si复合材料[J]. 金属学报, 2009, 45(10): 1261-1266.
, , , , . FABRICATION OF Cu/Si COMPOSITES ON SOL–GEL PRETREATED Si POWDERS[J]. Acta Metall Sin, 2009, 45(10): 1261-1266.

全文: PDF(2621 KB)  
摘要: 

以Si粉在Al2O3/TiO2复合溶胶中预处理形成的凝胶膜层作为扩散阻挡层抑制Cu-Si反应, 制备出Cu/Si复合材料, 研究了Cu/Si 复合材料的相组成、显微结构与性能.结果表明: Si粉预处理的Cu/Si复合材料主要由Cu和Si组成, 含有少量的Cu3Si相; 其硬度为147HV0.1, 室温热扩散系数为26.4 mm2/s. 复合材料烧结过程中Cu原子与Si原子借助膜层中的缺陷部位进行扩散, 在Cu/Si界面局部反 应形成Cu-Si化合物. 相比之下, Si粉未预处理的Cu/Si复合材料只含有Cu3Si相, 无Cu与Si残留; 其硬度高达399HV0.1, 室温热扩散 系数仅为3.0 mm2/s. 所以, Si粉表面溶胶--凝胶预处理可以有效降低Cu-Si反应程度, 保持复合材料中的Cu相与Si相, 提高导热性能.

关键词 Cu/Si复合材料 溶胶-凝胶 热扩散系数 扩散阻挡层    
Abstract

Cu/Si composite is an ideal material for electronic packaging owing to its excellent thermophysical and mechanical properties. Especially, its high thermal conductivity can fulfill the requirements of quick elimination of heat of high power devices. However, because of the severe diffusion and reaction between Cu and Si, the Cu–Si compound replaces the Cu and Si phases during the powder metallurgy fabrication at elevated temperature. Therefore, the crucial issue of Cu/Si composite fabrication is to control the Cu–Si diffusion and reaction. In this paper, the Cu/Si composites were fabricated using pretreated films on Si powder formed in Al2O3/TiO2 sol as a diffusion barrier to prevent Cu–Si reaction. The phases, microstructures and properties of Cu/Si composites were investigated. The results indicate that Cu/Si composites on which Si powders are pretreated by sol–gel are primarily composed of Cu, Si, and a few Cu3Si phases. The hardness of the composite is 147HV0.1, and the thermal diffusivity at room temperature is 26.4 mm2/s. Cu and i atoms diffuse via. the defects ifilm and react to form Cu–Si compound in local regions at Cu/Si interface during sintering. However, oly Cu3Si phase is detected in the composite on which the Si powder s not pretreated, and no Cu or Si trace is found. The hardnss is as high as 399HV0.1, but the thermal diffusiviy at room temperature is only 3.0 mm2/s. Thrfore, sol–gel pretreatment on Si powders can effecively reduce the Cu–Si reaction and protect the Cu and Si phases in composites so as to elevate the thermal conductivity.

Key wordsCu/Si composite    sol-gel    thermal diffusivity    diffusion barrier
收稿日期: 2009-03-16     
ZTFLH: 

TB333

 
基金资助:

国家自然科学基金资助项目50871078

作者简介: 蔡辉, 男, 1982年生, 博士生
[1] Yih P, Chung D D L. J Mater Sci, 1997; 32: 2873 [2] Jha S. In: IEEE ed., Proceedings of the 1995 45th Electronic Components & Technology Conference, Piscataway, NJ: IEEE, 1995: 542 [3] Kim J S, Kum J W, Kang E H, Nguyen D T, Kim J C, Kwon Y S. In: IEEE ed., 1st International Forum on Strategic Technologye–Vehicle Technology, IFOST 2006, Piscataway, NJ: IEEE Computer Society, 2006: 366 [4] Korab J, Korb G, Sebo P. In: IEEE ed., Proceedings of the 1998 22nd IEEE/CPMT International Electronics Manufacturing Technology Symposium, Piscataway, NJ: IEEE, 1998: 104 [5] Liu L, Tang Y P, Zhao H J, Zhu J H, Hu W B. J Mater Sci, 2008; 43: 974 [6] Sundberg G, Paul P, Sung C M, Vasilos T. J Mater Sci, 2006; 41: 485 [7] Schubert T, Brendel A, Schmid K, Koeck T, Ciupi´nski  L, Zieli´nski W, Weißg¨arber T, Kieback B. Composites, 2007; 38A: 2398 [8] Xing H W, Cao X M, HuWP, Zhao L Z, Zhang J S. Mater Lett, 2005; 59: 1563 [9] Zhang L, Qu X H, Duan B H, He X B, Ren S B, Qin M L. Compos Sci Technol, 2008; 68: 2731 [10] Lostetter A B, Barlow F, Elshabini A. Microelectron Reliab, 2000; 40: 365 [11] Yang J, Zhang H B, Tao K, Fan Y D. Appl Phys Lett, 1994; 64: 1800 [12] Lee Y F, Lee S L. Scr Mater, 1999; 41: 773 [13] Zacharatos F, Nassiopoulou A G. Phys Stat Sol (a), 2008; 205: 2513 [14] Song D Y, Zong X P, Sun R X, Wang Y Q. Semicond Technol, 2001; 26(2): 29 (宋登元, 宗晓萍, 孙荣霞, 王永青. 半导体技术, 2001; 26(2): 29) [15] Laurila T, Zeng K J, Kivilahti J K. J Appl Phys, 2000; 88: 3377 [16] Kumar M, Rajkumar, Kumar D, George P J, Paul A K. In: Lopez J F, Montiel–Nelson J A, Pavlidis D eds., Proceedings of SPIE — The International Society for Optical Engineering, VLSI Circuits and Systems, Vol.5117, Maspalomas: SPIE, 2003: 557 [17] Song S X, Liu Y Z, Mao D L, Ling H Q, Li M. Thin Solid Films, 2005; 476: 142 [18] Laurila T, Zeng K J, Kivilahti J K, Molarius J, Suni I. Appl Phys Lett, 2002; 80: 938 [19] Noya A, Takeyama M B, Sase T. J Vac Sci Technol, 2005; 23B: 280 [20] Li C, Hsieh J H, Tang Z Z. J Vac Sci Technol, 2008; 26A: 980 [21] Lin T Y, Cheng H Y, Chin T S, Chiu C F, Fang J S. Appl Phys Lett, 2007; 91: 152908 [22] Chen Y C, Ai X, Huang C Z, Wang B Y. Mater Sci Eng, 2000; A288: 19 [23] Palkar V R, Thapa D, Multani M S, Malghan S G. Mater Lett, 1998; 36: 235 [24] Cros A, Aboelfotoh M O, Tu K N. J Appl Phys, 1990; 67: 3328 [25] Chromik R R, Neils W K, Cotts E J. J Appl Phys, 1999; 86: 4273 [26] Hymes S, Kumar K S, Murarka S P, Ding P J, Wang W, Lanford W A. J Appl Phys, 1998; 83: 4507 [27] Kennedy A R, Wood J D, Weager B M. J Mater Sci, 2000; 35: 2909 [28] Chen G Q, Wu G H, Zhu D Z, Zhang Q. In: IEEE ed., 2005 6th International Conference on Electronics Packaging Technology, Piscataway, NJ: IEEE Computer Society, 2005: 321 [29] Wu Q S, Cai A L, Yang Y Q. Physical Property of Materials. Shanghai: East China University of Science and Technology Press, 2006: 80 (吴其胜, 蔡安兰, 杨亚群. 材料物理性能. 上海: 华东理工大学出版社, 2006: 80)
[1] 范超, 贾清, 崔玉友, 杨锐. 基于溶胶-凝胶法的YAlO3/Ti2AlC复合涂层在干燥与热分解过程中的开裂行为研究[J]. 金属学报, 2018, 54(7): 991-998.
[2] 黄祖江, 周敏, 杨阳, 陈泉志, 唐仕光, 李伟洲. 阳极氧化铝膜中间层阻挡元素扩散研究*[J]. 金属学报, 2016, 52(3): 341-348.
[3] 潘晓铭,吴俊升,肖葵,高书君,裴礼鸿,田然,李晓刚. 铝合金表面缓蚀自修复疏水性膜层的制备与表征[J]. 金属学报, 2013, 49(9): 1113-1120.
[4] 张立东,王飞,陈顺礼,汪渊. AlCrTaTiNi/(AlCrTaTiNi)N双层扩散阻挡层的制备及热稳定性[J]. 金属学报, 2013, 49(12): 1611-1616.
[5] 李海庆,宫骏,孙超. NiCrAlY/Al--Al2O3/Ti2AlNb高温抗氧化和力学性能研究[J]. 金属学报, 2012, 48(5): 579-586.
[6] 张露 石南林 宫骏 裴志亮 高立军 孙超. SiC长纤维表面(Al+Al2O3)复合涂层的制备[J]. 金属学报, 2011, 47(4): 497-501.
[7] 高茜 孙本哲 祁阳 齐连仲. 溶胶--凝胶法制备的Zn1-xCoxO晶体粉末的结构和磁性行为[J]. 金属学报, 2011, 47(3): 337-343.
[8] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[9] 李伟洲 王启民 宫骏 孙超 姜辛. 一步法制备含扩散阻挡层的多层体系及其界面结合强度[J]. 金属学报, 2010, 46(5): 561-568.
[10] 姚勇; 李伟洲; 王启民; 宫骏; 孙超; 李家宝 . Cr-O-N 扩散阻挡层对 NiCrAlY 涂层结合性能的影响[J]. 金属学报, 2008, 44(7): 876-882 .
[11] 李坤; 裴志亮; 宫骏; 石南林; 孙超 . 碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J]. 金属学报, 2007, 43(12): 1282-1286 .
[12] 刘波; 唐文进; 宋忠孝; 徐可为 . 铜互连多层膜系中自对准CuSiN层的微结构及其热稳定性[J]. 金属学报, 2007, 43(11): 1145-1147 .
[13] 周宏明; 易丹青; 余志明; 肖来荣; 李荐; 王斌 . 溶胶-凝胶法制备的ZnO∶Al薄膜的微观结构及光学、电学性能[J]. 金属学报, 2006, 42(5): 505-510 .
[14] 王启民; 郭明虎; 柯培玲; 孙超; 黄荣芳; 闻立时 . 电弧离子镀沉积Cr-O-N活性扩散阻挡层[J]. 金属学报, 2004, 40(12): 1264-1268 .
[15] 王启民; 武颖娜; 纪爱玲 . 电弧离子镀沉积Al(Cr)--O--N扩散阻挡层的研究[J]. 金属学报, 2004, 40(1): 83-87 .