Please wait a minute...
金属学报  2009, Vol. 45 Issue (1): 124-128    
  论文 本期目录 | 过刊浏览 |
基于全量理论的金属体积成形多步数值模拟
王鹏;董湘怀;傅立军
上海交通大学塑性成形工程系; 上海 200030
MULTI-STEP NUMERICAL SIMULATION OF BULK METAL FORMING PROCESSES BASED ON DEFORMATION THEORY OF PLASTICITY
WANG Peng;DONG Xianghuai;FU Lijun
Department of Plasticity Technology; Shanghai Jiaotong University; Shanghai 200030
引用本文:

王鹏 董湘怀 傅立军. 基于全量理论的金属体积成形多步数值模拟[J]. 金属学报, 2009, 45(1): 124-128.
, , . MULTI-STEP NUMERICAL SIMULATION OF BULK METAL FORMING PROCESSES BASED ON DEFORMATION THEORY OF PLASTICITY[J]. Acta Metall Sin, 2009, 45(1): 124-128.

全文: PDF(920 KB)  
摘要: 

运用一种基于全量理论的多步有限元方法计算分析了金属体积成形过程. 该方法针对刚塑性不可压缩材料, 在静力平衡条件下以约束变分原理通过最小化近似塑性势能进行有限元求解. 多步模拟在各中间构形的虚拟滑动约束下沿变形路径进行分步迭代计算, 考虑了接触和变形历史, 能够快速模拟较复杂的体积成形问题. 运用该方法对几个典型金属体积成形过程进行了正向一步和多步数值模拟, 将计算结果与增量有限元法计算结果进行了比较. 结果表明:在计算金属体积成形过程中, 基于全量理论的多步有限元模拟能够在大大缩短计算时间的同时获得与增量法计算结果相比偏差小于10%的计算结果.

关键词 金属体积成形有限元法多步模拟全量理论刚塑性材料    
Abstract

The bulk metal forming processes are calculated and analyzed by using a multi-step finite element method (FEM) based on deformation theory of plasticity. In this method, FEM solution is implemented to minimize approximated plastic potential in static equilibrium by constraint variation principle, for incompressible rigid-plastic materials. The multi-step simulation deals with the fictitious sliding constraints for intermediate configurations and iterations step by step along the deformation path, considering the contact and deformation history, which could provide rapid analysis for more complicated bulk forming problems. The one-step and multi-step forward simulations of several typical bulk metal forming problems are performed by this method, the calculated results of which are compared with those obtained by incremental FEM. The results indicate: multi-step FEM simulation of the bulk metal forming processes could give the reasonable answers with a small amount of computing time, the errors of which are less 10% compared with those of incremental FEM.

Key wordsbulk metal forming    finite element method    multi--step simulation    deformation theory of plasticity    rigid--plastic materials
收稿日期: 2008-07-02     
ZTFLH: 

TG316

 
基金资助:

国家自然科学基金项目50575143和教育部高等学校博士学科点专项科研基金项目20040248005资助

作者简介: 王鹏, 男, 1980年生, 博士生

[1] Budiansky B. J Appl Mech, 1959; 26: 259
[2] Sewell M J. J Mech Phys Solids, 1974; 22: 469
[3] Levy S, Shih C F, Wilkinson J P D, Stine P, McWilson R C. ASTM STP 647, 1978: 238
[4] Guo Y Q, Bstoz J L, Detraux P. Int J Numer Methods Eng, 1990; 30: 1385
[5] Kim S H, Kim S H, Huh H. J Mater Process Technol, 2001; 113: 779
[6] Lee C H, Kobayashi S. J Eng Ind, 1973; 95: 865
[7] Rong L, Nie Z R, Zuo T Y. Acta Metall Sin, 2006; 42: 394
(荣莉, 聂祚仁, 左铁镛. 金属学报, 2006; 42: 394)
[8] Hodge P G, White G N, Providence R I. J Appl Mech, 1950; 17: 180
[9] Chung K, Alexandrov S. Appl Mech Rev, 2007; 60: 316
[10] Chung K, Richmond O. Int J Plast, 1993; 9: 907
[11] Richmonda O, Alexandrov S. J Mech Phys Solids, 2000; 48: 1735
[12] Chung K, Lee W, Richmond O, Alexandrov S. Int J Plast, 2005; 21: 1322
[13] Boisse P, Ladeveze P, Poss M, Rougee P. Int J Plast, 1991; 7: 65
[14] Abdali A, Benkrid K, Bussy P. J Mater Process Technol, 1996; 60: 255
[15] Jourdan F, Bussy P. Comput Meth Appl Mech Eng, 2000; 190: 1245
[16] Liu B S, Liu Y. J Plast Eng, 1999; 6(2): 17
(柳葆生, 刘渝. 塑性工程学报, 1999; 6(2):17)
[17] Simo J C, Ortiz M. Comput Meth Appl Mech Eng, 1985; 49: 221
[18] Brunig M. Comput Struct, 1998; 69: 117
[19] Wang P, Dong X H, Fu L J. J Plast Eng, 2008; 15(4): 72
(王鹏, 董湘怀, 傅立军. 塑性工程学报, 2008; 15(4): 72)
[20] Il′yushin A A. Plasticity. Moscow: Gostekhizdat Publishing, 1948
(Ильюшин А А. Пластичность Москва: Государственное Издательство Технико-Теоретической Литературы, 1948)
[21] Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite–Element Method. New York: Oxford University Press Publishing, 1989: 86

[1] 李少杰, 金剑锋, 宋宇豪, 王明涛, 唐帅, 宗亚平, 秦高梧. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织[J]. 金属学报, 2022, 58(1): 114-128.
[2] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[3] 朱瑞栋, 董文超, 林化强, 陆善平, 李殿中. CRH2A型动车组缓冲梁结构焊接残余应力的有限元模拟*[J]. 金属学报, 2014, 50(8): 944-954.
[4] 张洪伟 张以都 吴琼. 喷丸强化过程及冲击效应的数值模拟[J]. 金属学报, 2010, 46(1): 111-117.
[5] 赵达文 李金富. 相场法模拟动力学各向异性对过冷熔体中晶体生长的影响[J]. 金属学报, 2009, 45(10): 1237-1241.
[6] 张昭; 刘亚丽; 张洪武 . 轴向载荷变化对搅拌摩擦焊接过程中材料变形和温度分布的影响[J]. 金属学报, 2007, 43(8): 868-874 .
[7] 张昭; 张洪武 . 焊接参数对搅拌摩擦焊接构件搅拌区材料融合的影响[J]. 金属学报, 2007, 43(3): 321-326 .
[8] 王敏婷; 杜凤山; 李学通; 郑炀曾 . 楔横轧轴类件热变形时奥氏体微观组织演变的预测[J]. 金属学报, 2005, 41(2): 118-122 .
[9] 岳珠峰 . 平头压痕蠕变损伤实验的有限元模拟分析[J]. 金属学报, 2005, 41(1): 15-.
[10] 雷明凯; 罗鹏 . 钢渗硼表面残余应力的数值分析[J]. 金属学报, 2002, 38(1): 47-52 .
[11] 马德军;徐可为;何家文. 测定金属薄膜屈服强度的纳米压入法研究[J]. 金属学报, 1998, 34(6): 661-666.
[12] 周喆;匡震邦. 两相材料的弹塑性性质和计算模型分析[J]. 金属学报, 1997, 33(9): 903-911.
[13] 孙雪坤;秦荣山;刘东民;周本濂. 界面性能对哑铃状短纤维增强复合材料增强效果的影响[J]. 金属学报, 1997, 33(7): 781-784.
[14] W.Dahl;P.Langenberg. 断裂力学法分析铆焊桥梁的安全性(英文)[J]. 金属学报, 1997, 33(2): 175-186.
[15] 王利;陈廉. Ⅰ+Ⅱ复合型载荷缺口前端双氢峰规律的研究[J]. 金属学报, 1995, 31(10): 461-468.