Please wait a minute...
金属学报  2008, Vol. 44 Issue (1): 91-97     
  论文 本期目录 | 过刊浏览 |
高强铝合金焊接接头无析出物区的形成机理
田志凌;许良红
钢铁研究总院结构
The investigation of the oriented precipitate-free zone in high strength aluminum alloy welds
许良红 Xu Liang-Hong;tian zhiling Tian
钢铁研究总院结构
引用本文:

田志凌; 许良红 . 高强铝合金焊接接头无析出物区的形成机理[J]. 金属学报, 2008, 44(1): 91-97 .
, . The investigation of the oriented precipitate-free zone in high strength aluminum alloy welds[J]. Acta Metall Sin, 2008, 44(1): 91-97 .

全文: PDF(491 KB)  
摘要: 采用电弧焊对20 mm厚的2519-T87高强铝合金进行表面堆焊,观察了 部分熔化区出现的无析出物区(PFZ)的组织特征,并对该区域的 形成机理进行了研究. 结果表明:无析出物区的形成主要 是晶界液化层迁移所导致的,迁移的驱动力为相干应变能, 焊缝收缩引起前、后晶粒的应变能差以及晶界曲率引起的界面能差. 焊接热输入对无析出物区的形成有一定影响,随着焊接热输入的增加, 无析出物区的宽度亦增加. 该区的存在使部分熔化区在拉伸和冲击过程中 易于断裂,且断裂方式为沿晶断裂.
关键词 高强铝合金部分熔化区无析出物区    
Abstract:The microstructure in the partially melted zone of an arc-welded 20mm thickness 2519-T87 high strength aluminum alloy is investigated, an oriented precipitate-free zone is found behind the grain boundary, and this zone is not uniformly surrounding the grain, but usually oriented toward the fusion line. The formation mechanism of this zone is also studied. Results indicate that the mechanism of grain boundary liquid film migration is favored the formation of the precipitate free zone, the driving forces include coherency strain energy, the differential strain energy between the two grains induced by the elastic stresses generated during welding and differential surface energy due to grain boundary curvature. And with the increase of heat input, the thickness of the precipitate free zone increase. The precipitate free zone is harmful to the mechanical property of partially melted zone, and the fractography of PMZ showing the intergranular fracture.
Key wordshigh strength aluminum alloy    partially melted zone    driving force    grain boundary migration
收稿日期: 2007-03-20     
ZTFLH:  TG146.2  
[1]Kramer L S,Blair T P,Blough S D,Pickens J R.Mater Eng Perform,2002;11:645
[2]Carter H B,David H E,Ashok S.Eng Fract Mech,1999; 62(1):1
[3]Fisher J,James J.Adv Mater Process,2002;160(9):43
[4]Devincent S M,Devletian J H,Gedeon S A.Weld J,1988; 67(7):33
[5]Huang C,Kon S.Weld J,2001;80(1):9
[6]Srinivasa R,Madhusudhana R,Prasad R.Mater Sci Eng, 2005;A403:69
[7]Ojo O A,Richards N L,Chaturvedi M C.Scr Mater,2004; 51:141
[8]Bj(?)rneklett B I,Grong (?),Myhr O R,Kluken A O.Sci Technol Weld Joining,1999;4:161
[9]Meyer B C,Doyen H,Emanowski D,Hirsch T,Mayr P. Metall Mater Trans,2000;31A:1454
[10]Wilson A.PhD Thesis,Pennsylvania State University, 2001
[11]Huang C,Kou S.Weld J,2001;80(2):46
[12]Huang C,Kou S.Weld J,2000;79(5):113
[13]Cahn J W.Acta Metall,1961;9:795
[14]Kuo M,Fournelie R A.Acta Metall Mater,1991;39:2835
[15]Barker S W,Purdy G R.Acta Mater,1998;46:511
[16]Nakkalil R,Richards N L,Chaturvedi M C.Acta Metall Mater,1993;41:3381
[17]Ryosnke K,Ikuo O,Kiyohito I.Mater Trans,2003;44: 1768
[18]Tian R Z,Wang Z T.Aluminum and Its Workin9 Hand Book.Changsha:Central and South University Press, 2000:97 (田荣璋,王祝堂.铝合金及其加工手册.长沙:中南大学出版社,2000:97)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 韩宝帅, 魏立军, 徐严谨, 马晓光, 刘雅菲, 侯红亮. 预变形对超高强Al-Zn-Mg-Cu合金时效组织与力学性能的影响[J]. 金属学报, 2020, 56(7): 1007-1014.
[3] 侯陇刚, 刘明荔, 王新东, 庄林忠, 张济山. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53(9): 1075-1090.
[4] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[5] 张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51(3): 257-271.
[6] 杨超,王继杰,马宗义,倪丁瑞,付明杰,李晓华,曾元松. 7B04铝合金薄板的搅拌摩擦焊接及接头低温超塑性研究*[J]. 金属学报, 2015, 51(12): 1449-1456.
[7] 从保强 齐铂金 周兴国 罗军. 超音频脉冲方波电流参数对2219铝合金焊缝组织和力学性能的影响[J]. 金属学报, 2009, 45(9): 1057-1062.
[8] 董杰; 刘晓涛; 赵志浩; 包卫平; 崔建忠 . 结晶器材料对低频电磁铸造超高强铝合金铸态组织的影响[J]. 金属学报, 2004, 40(2): 215-219 .