Please wait a minute...
金属学报  2007, Vol. 43 Issue (9): 989-993     
  论文 本期目录 | 过刊浏览 |
新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响
刘福国;杜敏
中国海洋大学化学化工学院海洋化学理论与工程技术教育部重点实验室;青岛 266100
Study on Inhibition of New Type Compound Inhibitor in NaCl Solution
中国海洋大学化学与化工学院
引用本文:

刘福国; 杜敏 . 新型复配缓蚀剂对G105钢在NaCl溶液中缓蚀行为的影响[J]. 金属学报, 2007, 43(9): 989-993 .

全文: PDF(262 KB)  
摘要: 利用动电位扫描和交流阻抗技术研究了新型复配缓蚀剂(ZnSO4, CaGL, APG, Na2SiO3和Na2WO4)对G105钻具钢在31%NaCl溶液中的缓蚀 行为, 并应用Kramers-Kronig关系对电化学阻抗谱的适用性进行了探讨, 采用XRD分 析了腐蚀产物物相组成, 用EDS分析了缓蚀剂膜元素吸附量变化. 结果表明, 复配 缓蚀剂是一种性能优良的混合型缓蚀剂. 在80℃时, 复配缓蚀剂的缓蚀率达到 80%以上. 腐蚀产物以Fe3O4为主, 缓蚀剂膜的各元素吸附量随着 缓蚀剂浓度的增加而增加.
关键词 钻具钢G105新型复配缓蚀剂NaCl溶液    
Abstract:The inhibitive effect of G105 steel was studied in 31(wt)% NaCl solution based on new compound inhibitor including ZnSO4, CaGL, APG, Na2SiO3, Na2WO4. And inhibitory mechanism was analyzed by polarization curve and EIS. Kramers-Kronig transforms have been developed to apply the in the analysis of experimental electrochemical impedance data. XRD and EDS were carried out to examine corrosion products formed on the surface and adsorbed inhibitor. The results showed that compound inhibitor was mixed-type inhibitor and the inhibition efficiency was above 80% at 80℃. The impedance data do not satisfy Kramers-Kronig transforms. Corrosion product was mainly Fe3O4, content of elements in inhibitors filmed on electrode surface increased with concentration of inhibitors.
Key words31% NaCl    G105    new compound inhibitor    polarization    EIS    Kramers–Kronig
收稿日期: 2006-12-27     
ZTFLH:  TG174  
[1]Fu C Y,Zheng J S,Yao A L.Chem Eng Oil Gas,2000; 29:257 (傅朝阳,郑家燊,姚安林.石油与天然气化工,2000;29:257)
[2]Durnie W,de Marco R,Kinsella B,Jefferson A,Pejcic B. J Electrochem Soc,2005;152B:1
[3]Jiang X,Zheng Y G,Ke W.Corrosion,2005;61:326
[4]Kuznetsov Y I,Andreev N N,Ibatullin K A,Oleinik S V. Prot Met,2002;38:322
[5]Quraishi M A,Sharma H K.Indian J Chem Technol,2005; 12(1):98
[6]Hu G Y,Zhou L F.Chin Surf Deterg Cosmet,1989;(3): 106 (胡耿源,周黎芳.日用化学工业,1989;(3):106)
[7]Bruzzoni P,Carranza R M,Collet Lacoste J R,Crespo E A.Electrochim Acta,2002;48:341
[8]Kerry N A,Darryl P B,Mark E O.Electrochim Acta, 2006;51:1497
[9]Xu C C,He H P.Surf Technol,2005;34(3):33 (许淳淳,何海平.表面技术,2005;34(3):33)
[10]Kendig M,Mansfeld F,Tsai S.Corros Sci,1983;23:317
[11]Wang J.J Chin Soc Corros Prot,1989;9:271 (王佳.中国腐蚀与防护学报,1989;9:271)
[12]Zhao Y T,Wu J H,Wang J.Electrochemistry,2001;7: 472 (赵永韬,吴建华,王佳.电化学,2001;7:472)
[13]Bastidas J M,Polo J L,Tortes C L,Cano E.Corros Sci, 2001;43:269
[14]Zlatanovic M,Popovic N,Bogdanovb Z,Zlatanovic S.Surf Coat Technol,2003;174-175:1220
[15]Ziemniak S E,Hanson M.Corros Sci,2002;44:2209
[16]Sarina P,Snoeyinkb V L,Bebee J.Water Res,2004;38: 1259
[17]Rokuro N,Daisuke S,Yasuaki M.Corros Sci,2004;46: 225
[1] 张亚丛 王锦程 吕文泉. Mg-Zn-Y-Zr合金在NaCl溶液中的腐蚀行为[J]. 金属学报, 2011, 47(9): 1174-1180.
[2] 李劲风; 张昭; 程英亮; 曹发和; 王建明; 张鉴清; 曹楚南 . NaCl溶液中Al-Li合金腐蚀过程的电化学特征[J]. 金属学报, 2002, 38(7): 760-764 .
[3] 雍兴跃; 林玉珍; 刘景军; 刘淑静 . 双相钢在流动中性含砂氯化物中的磨损腐蚀[J]. 金属学报, 2001, 37(7): 745-748 .