Please wait a minute...
金属学报  2007, Vol. 43 Issue (5): 465-471     
  论文 本期目录 | 过刊浏览 |
高温合金叶片定向凝固过程中辐射换热的计算
崔锴;许庆彦;于靖;柳百成;木间明彦;黑木康德;横山文彦
Radiative Heat Transfer Calculation for Superalloy Turbine Blade in Directional Solidification Process
引用本文:

崔锴; 许庆彦; 于靖; 柳百成; 木间明彦;黑木康德;横山文彦 . 高温合金叶片定向凝固过程中辐射换热的计算[J]. 金属学报, 2007, 43(5): 465-471 .

全文: PDF(345 KB)  
摘要: 计算机数值模拟在指导定向凝固工艺的制订上正起着越来越重要的作用。在定向凝固炉中进行叶片生产,由于炉内是真空环境,所以辐射换热在热量传输过程中占有很大比重。传统的辐射换热计算的重点是角系数的计算,带来计算时间长的问题。针对这种情况,本文提出了改进型Monte Carlo射线追踪法进行辐射换热计算,通过子空间的划分,并结合定向凝固的特点回避了角系数的直接计算,节省了计算时间。把该方法嵌入自行开发的三维模拟软件对柱状晶和单晶叶片的定向凝固过程进行了温度场模拟。并对实际叶片凝固过程进行温度场测试,模拟结果与实测结果吻合比较好。
关键词 高温合金叶片改进型MonteCarlo射线追踪法    
Abstract:Numerical simulation has a more and more important effect on improving directional solidification process. Because of the vacuum environment in the furnace where turbine blades are produced, radiative heat transfer plays a significant role in energy transportation. In traditional radiative heat transfer approaches, view factor calculation is a key step, so it takes too much time. Considering this point, Improved Monte Carlo Ray Tracing Approach has been developed. Because this approach combines the space division and the directional solidification features, the view factor calculation is avoided so that the time consuming is greatly shortened.The approach has been embedded in the self-developed software for turbine blade directional solidification temperature simulation. According to the experiments, the simulation results agreed well with the experimental.
Key wordssuperalloy turbine blade    improved Monte Carlo ray tracing method
收稿日期: 2006-09-20     
ZTFLH:  TG292  
[1] Schafrik R, Sprague R. Adv Mater Processes, 2004; 162(5): 29
[2] Modest M F. Radiative Heat Transfer. 2nd, New York: Academic Press, 2003: 644
[3] Upadhya G K, Das S, Chandra U, Paul A J. Appl Math Modelling, 1995; 19: 354
[4] Zhu J D, Ohnaka I, Kudo K, Obara S, Kimatsuka A, Wang T M, Kinoshita F, Murakami T. In: Stefanescu D M, James A W, Mark R J, Matthew J M , eds., Modeling of Casting, Welding and Advanced Solidification Processes-X, 1, Destin, FL: The Minerals, Metals & Materials Society, 2003: 447
[5] Shapiro A B. J Heat Transf ASME, 1985; 107: 730
[6] Charles N Z, Patrick J B. User's Manual for LSMONTE A Three-Dimensional, Radiative Heat Transfer Analysis Computer Code, Fort Collins, CO: Colorado State University, 2000: 6
[7] Walton G N. Calculation of Obstructed View Factors by Adaptive Integration, NISTIR-6925, National Institute of Standards and Technology (USA) Report, Caithersburg, MD, 2002: 8
[8] Liu S Z, Li J R, Tang D Z, Zhong Z G. Mater Eng, 1999; (7): 40 (刘世忠,李嘉荣,唐定忠,钟振纲.材料工程,1999;(7):40)
[9] Zhang K F, Mao X M, Fu H Z. Acta Aeronaut Astronaut Sin, 1993; 14(2): B072 (张克福,毛协民,傅恒志.航空学报, 1993;14(2):B072)
[10] Yu J, Zhang X P, Xu Q Y, Liang Z J, Liu B C, Zhang M H, Li F J, Zhou J H, Liu Y. Spec Cast Nonferrous Alloys, 2004; (5): 36 (于靖,张新平,许庆彦,梁作俭,柳百成,张明豪,李锋军,周继红,刘艳.特种铸造及有色合金,2004;(5):36)
[11] Jiang W H. Heat Transfer. Beijing: Higher Education Press, 1989: 183 (姜为珩.传热学.北京:高等教育出版社,1989:183)
[12] Liang Z J, Xu Q Y, Li J T, Li S Q, Zhang J, Liu B C, Zhong Z Y. Rare Met Mater Eng, 2003; 40: 164 (梁作俭,许庆彦,李俊涛,李世琼,张继,柳百成,仲增墉.稀有金属材料与工程,2003;40:164).
[1] 赵宝军,赵宇宏,孙远洋,杨文奎,侯华. Mn含量对Fe-Cu-Mn合金纳米富Cu析出相影响的相场法研究[J]. 金属学报, 2019, 55(5): 593-600.
[2] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[3] 李双明, 王斌强, 刘振鹏, 钟宏, 胡锐, 刘毅, 罗锡明. 高熔点金属Ir和Mo电子束区熔中不同取向晶体的竞争生长[J]. 金属学报, 2018, 54(10): 1435-1441.
[4] 唐宁, 王艳丽, 许庆彦, 赵希宏, 柳百成. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51(4): 499-512.
[5] 李双明, 耿振博, 胡锐, 刘毅, 罗锡明. 高熔点金属区域熔炼中晶体生长角和凝固速率对熔区稳定性的影响[J]. 金属学报, 2015, 51(1): 114-120.
[6] 高卡, 李双明, 傅恒志. 定向凝固过共晶合金Al-Al2Cu的组织演化及取向分析*[J]. 金属学报, 2014, 50(8): 962-970.
[7] 童文辉 王杰 周吉学 杨院生. 气体保护熔炼条件下Mg-Gd-Y-Zr合金的夹杂物[J]. 金属学报, 2012, 48(1): 63-69.
[8] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.
[9] 郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44(4): 433-439 .
[10] 于靖; 许庆彦; 李嘉荣; 袁海龙; 刘世忠; 柳百成 . 镍基高温合金多叶片定向凝固过程数值模拟[J]. 金属学报, 2007, 43(10): 1113-1120 .
[11] 郭志鹏; 熊守美; 曺尚铉; 崔正吉 . 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43(6): 607-611 .
[12] 郭志鹏; 熊守美; 曹尚铉; 崔正吉 . 铝合金高压铸造过程铸件与铸型间的界面热交换系数的研究[J]. 金属学报, 2007, 42(1): 103-106 .
[13] 贾清; 崔玉友; 杨; 锐 . 钛合金精密铸造用陶瓷模壳研究[J]. 金属学报, 2004, 40(11): 1170-1174 .
[14] 梁作俭; 许庆彦; 李俊涛 . Ti-Al合金精密铸件微观缩松预测[J]. 金属学报, 2003, 39(3): 278-282 .
[15] 钟勇; 阎德胜; 苏国跃; 杨柯 . LY12合金的挤压铸造微观偏析及改善方法[J]. 金属学报, 2001, 37(1): 42-46 .