Please wait a minute...
金属学报  2005, Vol. 41 Issue (12): 1298-1302     
  论文 本期目录 | 过刊浏览 |
放电等离子烧结制备超高强度块体Al90Mn9Ce1合金
赵占奎; 姚可夫; 金松哲; 李敬锋
清华大学机械工程系; 北京 100084
BULK Al90Mn9Ce1 ALLOY WITH ULTRA-HIGH STRENGTH PREPARED BY SPARK PLASMA SINTERING
ZHAO Zhankui; YAO Kefu; JIN Songzhe; LI Jingfeng
Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

赵占奎; 姚可夫; 金松哲; 李敬锋 . 放电等离子烧结制备超高强度块体Al90Mn9Ce1合金[J]. 金属学报, 2005, 41(12): 1298-1302 .
, , , . BULK Al90Mn9Ce1 ALLOY WITH ULTRA-HIGH STRENGTH PREPARED BY SPARK PLASMA SINTERING[J]. Acta Metall Sin, 2005, 41(12): 1298-1302 .

全文: PDF(278 KB)  
摘要: 采用放电等离子烧结(spark plasma sintering)法在低压和低温 (50 MPa和400-500 ℃)条件下快速烧结制备出了含准晶强化相的 块体Al90Mn9Ce1合金, 其致密度大于98%, 抗压 强度超过1000 MPa. 与普通高强度铝合金相比, 其强度约提高1倍. 结果表明, 在放电等离子烧结过程中, 采用大电流、短时、低 温的烧结条件可使快冷雾化法制备的原始合金粉末中的准晶强 化相及其它细小强化相得以保存, 而局域强放电等离子体可以分 解或破碎铝合金粉末表面的氧化膜, 使合金粉末颗粒间的结合强 度增加, 制备出的块体铝合金具有高的致密度和超高强度.
关键词 Al90Mn9Ce1合金放电等离子烧结成型性    
Abstract:Using spark plasma sintering technique, a bulk Al90Mn9Ce1 alloy, reinforced by quasicrystal particles, has been sintered under the pressure of 50 MPa at 400 ℃. The density and the compressive strength of the as-prepared bulk alloy are above 98% and 1000 MPa, respectively. It has been found that during the spark plasma sintering process, under the condition of large current, short sintering time and lower sintering temperature, the metastable icosahedron quasicrystal phase in primary powder particles is kept. And the strong discharge plasma among particles can decompose or break the oxide film on the primary powder's surface, resulting in the increment of their combination strength. So the as-prepared bulk alloy possesses high density and ultra-high strength.
Key wordsAl90Mn9Ce1 alloy    spark plasma sintering    formability
收稿日期: 2005-07-01     
ZTFLH:  TG146.21  
[1] Inoue A. Prog Mater Sci, 1998; 43: 365
[2] Inoue A. Ada Mater, 2000; 48: 279
[3] Schurack F, Bckert J, Schultz L. Acta Mater, 2001; 49: 1351
[4] Zhao Z K, Li J C, Jiang Q. J Mater Eng Perform, 2002; 11: 262
[5] Zhao Z K, Yao K F, Li J C, Jiang Q. Acta Metll Sin, 2004; 40: 355 (赵占奎,姚可夫,李建忱,蒋青.金属学报,2004;40:355)
[6] Mamedov V. Powd Metall, 2002; 45: 322
[7] Wen C E, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Asahina I. J Mater Sci Lett, 2003; 22: 1407
[8] Luo Y M, Li S Q, Wei P, Liu L. Mater Lett, 2004; 58: 150
[9] Thostenson E T, Ren Z F, Chou T W. Comp Sci Technol, 2001; 61: 1899
[10] Liu W P, Naka M. Scr Mater, 2003; 48: 1225
[11] Shen B L, Kimura H, Inoue A, Omori M, Okubo A. Mater Trans, 2002; 43: 1961
[12] Xie G Q, Ohashi O, Yamaguchi N, Wang A R. Metall Mater Trans, 2003; 34A: 2655
[13] Inoue A, Watanabe M, Kimura H M, Takehashi F, Nagata A, Masumoto T. Mater Trans JIM, 1992; 33: 723
[14] Shechtman D, Blech I. Metall Trans, 1985; 16A: 10p
[1] 刘泽, 宁汉维, 林彰乾, 王东君. SPS烧结参数对NiAl-28Cr-5.5Mo-0.5Zr合金微观组织及室温力学性能的影响[J]. 金属学报, 2021, 57(12): 1579-1587.
[2] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[3] 康利梅,杨超,李元元. 半固态烧结法制备高强韧新型双尺度结构钛合金[J]. 金属学报, 2017, 53(4): 440-446.
[4] 胡娜, 薛丽红, 顾健, 李和平, 严有为. 磨球级配对MA-SPS原位合成Al13Fe4/Al复合材料的组织结构及力学性能的优化*[J]. 金属学报, 2015, 51(2): 216-222.
[5] 潘昆明,张来启,魏世忠,李继文,李豪,林均品. Mo-Si-B三元系中T2相合金的制备工艺研究*[J]. 金属学报, 2015, 51(11): 1377-1383.
[6] 顾健,古飒飒,薛丽红,吴树森,严有为. 机械合金化和放电等离子烧结制备Al-Fe合金的微观组织演变[J]. 金属学报, 2013, 29(4): 435-442.
[7] 谈军 周张健 刘亚勤 屈丹丹 钟铭 葛昌纯. 碳纳米管对W显微组织结构及其性能的影响[J]. 金属学报, 2011, 47(12): 1555-1560.
[8] 赵世贤 宋晓艳 王明胜 魏崇斌 张久兴 刘雪梅. WC/Co粉体粒径匹配与放电等离子烧结致密化[J]. 金属学报, 2009, 45(4): 497-502.
[9] 卢年端; 宋晓艳; 张久兴 ; 闫相全; 李尔东 . 稀土Nd超细纳米晶块体的制备及其物理性能[J]. 金属学报, 2007, 43(7): 739-743 .
[10] 赵世贤; 宋晓艳; 张久兴; 刘雪梅 . 原料粉末粒径匹配和结合状态对放电等离子技术制备超细硬质合金的影响[J]. 金属学报, 2007, 42(1): 0-112 .
[11] 刘雪梅; 宋晓艳; 张久兴 . 放电等离子烧结过程中粉末颗粒内部温度场的模拟及颈部演变[J]. 金属学报, 2006, 42(7): 757-762 .