Please wait a minute...
金属学报  2004, Vol. 40 Issue (9): 1000-1004     
  论文 本期目录 | 过刊浏览 |
脉冲放电烧结纳米WC-10%Co粉
吴稀勇 张伟 汪伟 杨菲 闵家源 郭敬东
中国科学院金属研究所沈阳材料科学国家(联合)实验室;沈阳110016
Electric-Discharge Compaction of Nanocrystalline WC-10%Co Powders
WU Xiyong; ZHANG Wei; WANG Wei; YANG Fei; MIN Jiayuan; GUO Jingdong
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
引用本文:

吴稀勇; 张伟; 汪伟; 杨菲; 闵家源; 郭敬东 . 脉冲放电烧结纳米WC-10%Co粉[J]. 金属学报, 2004, 40(9): 1000-1004 .
, , , , , . Electric-Discharge Compaction of Nanocrystalline WC-10%Co Powders[J]. Acta Metall Sin, 2004, 40(9): 1000-1004 .

全文: PDF(4171 KB)  
摘要: 以喷雾转化工艺(SCP)制备的纳米WC-10%Co(质量分数)粉为原料, 应用脉冲放电烧结方法(EDC)制备出平均晶粒尺寸为120 nm左右的超细晶WC-Co硬质合金, 并对样品的微观组织结构与力学性能进行了分析. 结果表明, EDC方法极短的烧结时间是抑制晶粒长大的重要原因. 除裂纹桥联机制外,弥散分布的小孔隙对提高WC-Co硬质合金的断裂韧性也起到重要作用.
关键词 WC-Co纳米材料脉冲放电烧结     
Abstract:WC-10%Co (mass fraction) cemented carbide with an average grain size of 120 nm are fabricated by means of electric-discharge compacting (EDC) the nano-crystalline WC-10%Co powders which were synthesized by spray conversion process (SCP). Microstructure and mechanical properties of the cemented carbide are investigated. Because of short holding time during EDC, the grain growth is retarded. It is found that the dispersed micro-size pores are contributed to the high fracture toughness of the samples besides the bridging ligament mechanism.
Key wordsWC-Co    nano-crystalline material    electric-discharge compacting (EDC)
收稿日期: 2003-08-12     
ZTFLH:  TG135.5  
[1] Berger S, Porat R, Rosen R. Progr Mater Sci, 1997; 42: 311
[2] Bhatia S J, McCandlish L E, Kear B H. US Pat, 5 352 269, 1994
[3] McCandlish L E, Kear B H, Kim B K. Nanostruct Mater, 1992; 1: 119
[4] Sadangi R K, McCandlish L E, Kear B H, Seegopaul P. In: Oakes J H, Reinshagen J H, eds., Advances in Powder Metallurgy and Particulate Materials 1998, Vol.1, Int Conf on Powder Metallugy and Particulate Materials, Las Vegas, Nev, 1998: 51
[5] Bartha L, Atato P, Toth A L, Porat R, Berger S, Rosen A. J Adv Mater, 2000; 32: 23
[6] Cha S I, Hong S H, Kim B K. Mater Sci Eng, 2003; A351:31
[7] El-Eskandarany M S, Mahday A A. J Alloys Compd, 2000;312: 315
[8] Jia K, Fischer T E, Gallois B. Nanostruct Mater, 1998;10: 875
[9] Kishino J, Nomura H, Shin S G, Matsubara H, Tanase T.Int J Refract Met Hard Mater, 2002; 20: 31
[10] Kim S, Park J K, Lee D. Scr Mater, 1998; 38: 1563
[11] Gurland J. Trans AIME, 1954; 200: 285
[12] Kim D K, Pak H, Okazaki K. Mater Sci Eng, 1988; A104:191
[13] Okazaki K. Mater Sci Eng, 2000; A287: 189
[14] Rajagopalan P K, Desai S V, Kalghatgi R S, Krishnan TS, Bose D K. Mater Sci Eng, 2000; 280 A: 289
[15] Qiu J, Shibata T, Rock C, Okazaki K. Mater Trans JIM,1997; 38: 226
[16] Zhang Z Y, Wahlberg S, Wang M S, Muhammed M.Nanostruct Mater, 1999; 12: 163
[17] Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M. PhysRev, 1997; 56B: 13849
[18] Vasel C H, Krawitz A D, Drake E F, Kenik E A. MetallTrans, 1985; 16A: 2309
[19] Zhang W, Sui M L, Zhou Y Z, Guo J D, He G H, Li D X.J Mater Res, 2003; 18: 1543
[20] Zhang W, Sui M L, Zhou Y Z, Zhong Y, Li D X. Adv EngMater, 2002; 4: 697
[21] Roebuck B, Almond E A. Int Metall Rev, 1988; 33: 90
[22] Tang D W, Zhou B L, Cao H, He G H. J Appl Phys, 1993;73: 3749
[23] Groza J R, Garcia M, Schneider J A. J Mater Res, 2001;16: 286
[24] Conrad H. Mater Sci Eng, 2000; A287: 276
[25] Ravichandran K S. Acta Metall Mater, 1994; 42: 143
[26] Kratic V D, Komac M. Philos Mag, 1985; 51A: 191
[27] Rice R W. J Mater Sci, 1996; 31: 1969
[28] Rice R W. J Mater Sci, 1996; 31: 4503
[29] Reimanis I E. Mater Sci Eng, 1997; A237: 159
[30] Bhaduri S, Bhaduri S B. Nanostruct Mater, 1997; 8: 755
[1] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[2] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[3] 黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 马氏体不锈钢上梯度纳米结构表层的形成及其对电化学腐蚀行为的影响*[J]. 金属学报, 2015, 51(5): 513-518.
[4] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1): 1-10.
[5] 王瑶, 刘雪梅, 宋晓艳, 魏崇斌 王海滨, 王西龙. 高性能再生硬质合金的短流程回收制备*[J]. 金属学报, 2014, 50(5): 633-640.
[6] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.
[7] 王铁钢 宋丙红 华伟刚 宫骏 孙超. 工艺参数对爆炸喷涂WC-Co涂层性能均匀性的影响[J]. 金属学报, 2011, 47(1): 115-122.
[8] 顾冬冬; 沈以赴 . 添加La2O3对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响[J]. 金属学报, 2007, 43(9): 968-976 .
[9] 刘建华; 梁馨; 李松梅 . 生物约束成型与化学沉积制备Cu微米杆材料[J]. 金属学报, 2007, 43(5): 557-560 .
[10] 赵世贤; 宋晓艳; 张久兴; 刘雪梅 . 原料粉末粒径匹配和结合状态对放电等离子技术制备超细硬质合金的影响[J]. 金属学报, 2007, 42(1): 0-112 .
[11] 卢柯; 卢磊 . 金属纳米材料力学性能的研究进展[J]. 金属学报, 2000, 36(8): 785-789 .
[12] 金雪松; 欧盛荃 . K18/Mo纳米多层材料的力学性能及高温稳定性[J]. 金属学报, 2000, 36(1): 99-103 .
[13] 张振忠; 宋广生; 杨根仓 . 深过冷Fe-B-Si共晶块体纳米材料的凝固组织特征[J]. 金属学报, 1999, 35(7): 693-697 .
[14] 邵刚勤; 吴伯麟 . 用流态化工艺制备WC-Co粉末[J]. 金属学报, 1999, 35(2): 144-146 .
[15] 曾桂仪; 周广智; 巴启先 . 退火温度对Fe72.5Cu1Nb2V2Si13.5B9软磁合金微结构的影响[J]. 金属学报, 1999, 35(11): 1178-1182 .