Please wait a minute...
金属学报  2004, Vol. 40 Issue (2): 113-119     
  论文 本期目录 | 过刊浏览 |
应力对钢中贝氏体相变的影响
徐祖耀
上海交通大学材料科学与工程学院; 上海 200030
Effect of Stress on Bainitic Transformation in Steel
XU Zuyao (T. Y. Hsu)
School of Materials Science and Engineering; Shanghai Jiaotong
引用本文:

徐祖耀 . 应力对钢中贝氏体相变的影响[J]. 金属学报, 2004, 40(2): 113-119 .
. Effect of Stress on Bainitic Transformation in Steel[J]. Acta Metall Sin, 2004, 40(2): 113-119 .

全文: PDF(4911 KB)  
摘要: 外加应力使贝氏体相变形核率增大, 等温孕育期缩短, 即使所加应力远低于母相的屈服强度. 由于钢 中γ→α+γ‘的形核驱动力较大(约为kJ/mol数量级), 贝氏体相变的膨胀应变能很小, 过小的外加应力对形核率的影响甚微. 考虑在外加应力的影响下, 会使界面能量有所下降, 也可能发生碳原子的再分布, 偏聚在晶界或其它缺陷, 甚至碳化物析出都会显著地增大形核率和缩短孕育期, 有待进一步实验给予证明. 无应力下, 贝氏体相变动力学可以用Avrami的等温相变方程来表述; 应力下则符合应力下铁素体及珠光体相变的动力学模型(经修改的Avrami方程). 形变奥氏体促发贝氏体相变, 但随后会发生奥氏体的力学稳定 化, 其机制可能和马氏体相变时的奥氏体力学稳定化不完全相同, 仅形变形成的位错阻碍贝氏体以一定位向长大, 使相变动力学迟缓. 贝氏体相变时奥氏体力学稳定化的模型有待建立.
关键词 贝氏体相变 应力下相变 相变动力学    
Abstract:Under the effect of stresses, the interphase energy may be reduced and probably the carbon atoms may redistribute, e.g., segregate at grain boundaries or other defects, and even the carbide may precipitate, resulting in the increase of the driving force for nucleation, in turn, marked raise of the nucleation rate and acceleration of incubation for bainitic transformation. The kinetics under stress is consistent with the kinetics model of ferrite and pearlite transformations under stress, i.e., the modified Avrami equation. Prior deformation of austenite may at first promote the bainite formation but may lead the occurrence of the mechanical stabilization of austenite at some later stage. The mechanism of the mechanical stabilization of austenite during bainite reaction may not be completely analogous with that during martensitic transformation, and it may only be the result from the hindrance of directional growth of bainite by dislocations formed in deformation, retarding the overall transformation kinetics. Model of the austenite mechanical stabilization is expected to be established.
Key wordsbainitic transformation    transformation under stress    transformation kinetics
收稿日期: 2003-06-17     
ZTFLH:  TG111.5  
[1] Denis S, Gautier E, Simon A, Beck G. Mater Sci Technol, 1985; 1: 805
[2] Duckworth W E. J Met, 1966; 18: 915
[3] Guarnieri G J, Kanter J J. Trans ASM, 1948; 40: 1147
[4] Howard R T, Cohen M. Trans AIME, 1948; 176: 384
[5] Radcliffe S V, Rollason E C. J Iron Steel Inst, London, 1959; 191: 56
[6] Goodenow R H, Barkalow R H, Hehemann R F. Iron Steel Inst Spec Rep No. 93, London, 1969: 135
[7] Ericsson C E, Bhat M S, Parker E R, Zackay V F. Metall Trans, 1976; 7A: 1800
[8] Ko T. J Iron Steel last, London, 1953; 175: 16
[9] Hawkins M J, Barford J. J Iron Steel Inst, London, 1972; 210: 97
[10] Cottrell A H. J Iron Steel Inst, London, 1945; 151: 93
[11] Jepson M D, Thompson F C. J Iron Steel Inst, London, 1949; 162: 49
[12] Porter L E, Rosenthal P C. Acta Metall, 1959; 7: 504
[13] Radcliffe S V, Schatz M, Kulin S A. J Iron Steel Inst, London, 1963; 201: 143
[14] Nilan T G. TMS AIME, 1967; 239: 898
[15] Drozdov B Y, Kogan L I, Entin R I. Phys Met Metallogr, 1962; 13: 135
[16] Umemoto M, Bando S, Tamura I. In: Tamura I et al eds., Proc Int Conf Martensitic Transformations 1986, Sendal, Japan: The Jpn Inst Met, 1987: 595
[17] BhadeshiaH K D H, David S A, Vitek J M, Read R W. Mater Sci Technol, 1991; 7: 686
[18] Matsuzaki A, Bhadeshia H K D H, Harade H. Acta Metall Mater, 1994; 42: 1081
[19] Shipway P H, Bhadeshia H K D H. Mater Sci Eng, 1995; A201: 143
[20] Freiwillig R, Kudrman J, Chrska P. Metall Trans, 1976; 7A: 1091
[21] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1897, 1905, 1915
[22] Xu Z Y (Hsu T Y). Martensitic Transformation and Martensite. 2nd ed., Beijing: Science Press, 1999: 593, 700(徐祖耀、马氏体相变与马氏体.第2版,北京:科学出版社,1999:593,700)
[23] Bhadeshia H K D H. Mater Sci Eng, 1999; A273-275: 58
[24] Bhadeshia H K D H. Bainit'e in Steels. 2nd ed., Cambridge: The Cambridge University Press, 2001: 207
[25] Tsazaki K, Ueda T, Fujiwara K, Maki T. In: Igata N, Kimpara I, Kishi T, Nakata E, Okura A, Uryn T, eds., New Materials and Processes for the Future, Proc 1st Japan Int SAMPE Symp and Exhibition, Chiba, Japan: Society for the Advancement of Materials and Process Engineering, 1989: 799
[26] Singh S B, Bhadeshia H K D H. Mater Sci Technol, 1996; 12: 610
[27] Yang J R, Huang C Y, Hsiech W H, Chiou C S. Mater Trans JIM, 1996; 37: 579
[28] Larn R H, Yang J R. Mater Sci Eng, 2000; A278: 278
[29] Lange W F Ⅲ, Enomoto M, Aaronson H I. Metall Trans, 1988; 19A: 427
[30] Hsu T Y (Xu Z Y), Mou Y W. Acta Metall, 1984; 32: 1469
[31] Brandes E A. Smithells Metals Reference Book. London: Butterworths, 1983: 15-2
[32] Grujicic M, Zhou X W. CALPHAD, 1993; 17: 383
[33] Feder J, Russell K C, Lothe J, Pound G M. Adv Phys, 1966; 15: 111
[34] Gao N, Liu Z, Yu Y P. Trans Mater Heat Treat, 2001; 22(3) : 1(高宁,刘庄,余永平.材料热处理学报,2001;22(3) :1)
[35] Ye J S. PhD Thesis, Shanghai Jiaotong University, 2003(叶健松.上海交通大学博士学位论文,2003)
[36] Hsu T Y (Xu Z Y), Chen W Z. Scr Metall, 1987; 21: 1289C
[1] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[2] 徐士新, 余伟, 李舒笳, 王坤, 孙齐松. 预变形温度对纳米贝氏体相变动力学及组织的影响[J]. 金属学报, 2018, 54(8): 1113-1121.
[3] 吴书舟,易幼平,黄始全,李俊,李晨. 7050铝合金淬火敏感性研究和微观组织分析*[J]. 金属学报, 2016, 52(12): 1503-1509.
[4] 王长军,孙新军,雍岐龙,李昭,张熹,江陆. 贝氏体相变温度对含Ti和Mo低碳热轧TRIP钢的组织与力学性能影响及析出相的微观结构表征[J]. 金属学报, 2013, 29(4): 399-407.
[5] 邓伟 高秀华 秦小梅 高鑫 赵德文 杜林秀. 冷却速率对变形与未变形X80管线钢组织的影响[J]. 金属学报, 2010, 46(8): 959-966.
[6] 康沫狂 张明星 刘峰 朱明. 金属合金等温相变的体激活能及相变机制 I. 钢的中温(贝氏体)等温相变[J]. 金属学报, 2009, 45(1): 25-31.
[7] 方鸿生; 冯春; 郑燕康; 郑秀华; 张弛; 白秉哲 . 下贝氏体中碳化物的析出[J]. 金属学报, 2007, 43(6): 583-588 .
[8] 方鸿生; 杨志刚; 杨金波; 白秉哲 . 钢中贝氏体相变机制的研究[J]. 金属学报, 2005, 41(5): 449-457 .
[9] 于少飞; 钱百年; 国旭明 . ULCB熔敷金属组织与碳、氧含量对力学性能的影响[J]. 金属学报, 2005, 41(10): 1082-1086 .
[10] 许云波; 王国栋; 刘相华 . 奥氏体低温变形相变α-Fe晶粒尺寸的预测模型[J]. 金属学报, 2002, 38(2): 123-126 .
[11] 许云波; 王国栋; 刘相华 . 低碳钢低温变形γ→α相变行为的预测模型[J]. 金属学报, 2002, 38(10): 1021-1026 .
[12] 刘晓; 钟凡 . 贝氏体相变理论——两个一级相变耦合的模型[J]. 金属学报, 1999, 35(11): 1135-1138 .
[13] 刘春成; 姚可夫; 高国峰; 刘庄 . 应力应变对马氏体相变动力学及相变塑性影响的研究[J]. 金属学报, 1999, 35(11): 1125-1129 .
[14] J.W.Christian. 相变中的界面(英文)[J]. 金属学报, 1997, 33(2): 150-156.
[15] 刘振宇;王国栋;张强. 形变奥氏体连续冷却相变后α晶粒尺寸的预测[J]. 金属学报, 1995, 31(22): 468-172.