Please wait a minute...
金属学报  1988, Vol. 24 Issue (2): 142-146    
  论文 本期目录 | 过刊浏览 |
金属断裂表面的分形(Fractal)与断裂韧性
穆在勤;龙期威
中国科学院金属研究所;沈阳;中国科学院国际材料物理中心
FRACTAL DIMENSION OF FRACTURED SURFACE AND FRACTURE TOUGHNESS IN METALS
MU Zaiqin;LONG Qiwei Institute of Metal Research; Academia Sinica; Shenyang International Centre for Materials Physics; Academia Sinica; Shenyang
引用本文:

穆在勤;龙期威. 金属断裂表面的分形(Fractal)与断裂韧性[J]. 金属学报, 1988, 24(2): 142-146.
, . FRACTAL DIMENSION OF FRACTURED SURFACE AND FRACTURE TOUGHNESS IN METALS[J]. Acta Metall Sin, 1988, 24(2): 142-146.

全文: PDF(441 KB)  
摘要: 本文借助于图象分析技术使用Slit island方法研究了两种高强度钢不同热处理制度和不同试验温度条件下平面应变断裂表面的分形维数.结果表明,断裂表面是一种分形结构,断裂韧性K_(IC)值的对数随分形维数D_F增加成单调下降的直线关系.这种关系反映了不同热处理制度所引起的材料微观结构变化和不同试验温度所引起的断裂机制变化,D_F可以做为金属断裂韧性的一种度量。最后,用临界裂纹扩展力与不规则断裂表面真实面积之间的关系对结果进行了理论分析.
关键词 分形维数断裂表面断裂韧性临界裂纹扩展力码尺长度    
Abstract:The slit island method is employed to measure fractal dimensions D_F of fracturedsurfaces under plane strain conditions with the help of an image analysis technique for twohigh strength steels under different heat treatment conditions and at different test temperatures.It is shown that the fractured surfaces are of fractals. The values of D_F decrease smoothlywith an increase of the logarithm values of fracture toughness K_(IC), i. e. the fractal dimensionsD_F are approximately a linear function of the logarithm values of fracture toughness K_(IC). Thisrelationship might reflect the changes in the microstructure that occured during different heattreatments and the changes in the fracture mechanism that occured at different test temperatures.The fractal dimension D_F could be regarded as a measure of fracture toughness in metels. Fi-nally, the experimental results are explained in terms of the relation between critical crack exten-sion force and the true total area of the irregular fracture surfaces.
Key wordsfractal dimension    fractured surface    fracture toughness    critical extension force    yardstick length
收稿日期: 1988-02-18     
1 Coster M, Chermant J L. Int Metall Rev, 1983; 28: 228
2 Mandelbrot B B, Passoja D E, Paullay A J. Nature, 1984; 308: 721
3 Lung C W. (龙期威)In: Pietronero L, Tosatti E eds. Fractals in Physics, Elsevier Science Publishers B V, 1986: 189
4 Pande C S, Richards L E, Louat N, Dempsey B D, Schwoeble A J. Acta Metall, 1987; 35: 1633
5 Underwood E E, Banerji K. Materials Science and Engineering. 1986; 80. 1
6 冯端,王业宁,丘第荣.金属物理,下册,北京:科学出版社,1975:754
7 Mandelbrot B B. The Fractal Geometry of Nature, New York: Freeman, 1983: 25, 29, 45
[1] 杨杜, 白琴, 胡悦, 张勇, 李志军, 蒋力, 夏爽, 周邦新. GH3535合金中晶界特征对碲致脆性开裂影响的分形分析[J]. 金属学报, 2023, 59(2): 248-256.
[2] 曹江海, 侯自兵, 郭中傲, 郭东伟, 唐萍. 过热度对轴承钢凝固组织整体形貌特征及渗透率的影响[J]. 金属学报, 2021, 57(5): 586-594.
[3] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[4] 刘政,张嘉艺,罗浩林,邓可月. 混沌对流下的半固态A356铝合金初生相形貌演变研究*[J]. 金属学报, 2016, 52(2): 177-183.
[5] 吴小军 程文 乔生儒 邹武 张鹏 张晓虎. 树脂浸渍炭化过程中C/C复合材料孔隙演化[J]. 金属学报, 2009, 45(11): 1402-1408.
[6] 肖林;顾海澄. Zr及Zr-4合金的循环耗散能、分形维数与疲劳寿命的关系[J]. 金属学报, 1998, 34(7): 705-712.
[7] 刘宁;赵兴中;江来珠;罗会国;胡镇华;崔崑. Ni粘结的Ti(C,N)金属陶瓷的横向断裂强度与断口的分形分析[J]. 金属学报, 1995, 31(5): 229-235.
[8] 李学良;林建新. 易切削钢冲击断口分维的随机分形分析[J]. 金属学报, 1994, 30(8): 380-384.
[9] 类维生;陈丙森. 分形用于金属断裂研究的力学量选择问题[J]. 金属学报, 1994, 30(6): 269-273.
[10] 孙力玲;董连科;张静华;胡壮麒. 镍基高温合金定向凝固过程中MC型碳化物的分形分析[J]. 金属学报, 1993, 29(9): 6-10.
[11] 孙力玲;董连科;张济山;唐亚俊;张静华;胡壮麒. 高温合金定向凝固行为的分形分析[J]. 金属学报, 1993, 29(3): 19-24.
[12] 仪建章;阳志安;朱世杰;王中光. 34CrMoA转子钢高温循环蠕变断口分形维数与蠕变性能的关系[J]. 金属学报, 1992, 28(12): 18-22.
[13] 董连科;王晓伟. 分形维数与临界扩展力[J]. 金属学报, 1990, 26(2): 69-73.
[14] 苏辉;张玉贵;阎振棨. 金属冲击断口的分形分析[J]. 金属学报, 1989, 25(6): 82-84.