Please wait a minute...
金属学报    DOI: 10.3724/SP.J.1037.2013.00401
  论文 本期目录 | 过刊浏览 |
间隙原子O对高Nb-TiAl合金显微组织与相转变的影响
吴泽恩,胡锐,张铁邦,周欢,寇宏超,李金山
西北工业大学凝固技术国家重点实验室, 西安 710072
EFFECT OF OXYGEN ON MICROSTRUCTURE AND PHASE TRANSFORMATION OF HIGH Nb CONTAINING TiAl ALLOYS
WU Zeen, HU Rui, ZHANG Tiebang, ZHOU Huan, KOU Hongchao, LI Jinshan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
全文: PDF(1490 KB)  
摘要: 

采用真空非自耗电弧炉制备了不同含O量的Ti-46Al-8Nb-xO (原子分数)合金铸锭,研究间隙原子O对高Nb-TiAl 合金凝固组织及相转变的影响规律和作用机制.结果表明, 随着O含量的增加, Ti-46Al-8Nb-xO铸锭中α2相含量逐渐增加.O的加入明显细化合金组织, 并且使得组织由双态组织向全片层组织转变.间隙原子O的添加使得Ti-46Al-8Nb合金由β相领先的凝固方式转化为以α相领先的凝固方式,同时使包晶反应α+L→γ向低Al区移动,共析反应α→α2+β向高Al区移动, 扩大了α相区的范围.通过DSC分析表明, O原子可以明显提高合金的共析反应温度, 但随着含量的增加作用效果逐渐减弱.

关键词 Nb-TiAl合金间隙原子O凝固行为相转变    
Abstract

Due to the low density, high specific strength, elastic modulus and oxidation resistance at high temperature, TiAl-based alloys have attracted much attention as a candidate of the next generation high temperature materials in aerospace and automobile application. Meanwhile, the excellent properties oxidation resistance, creep strength and tensile strength at the elevated temperature make the high Nb containing TiAl alloys be one of the promising development directions of future TiAl alloys. During the studies about alloying which is an efficient way to improve the performance of TiAl alloys, researchers have found that interstitial atoms B, C and N notably refine the grains and then improve mechanical properties including yield strength, micro-hardness, and tensile ductility of TiAl alloys. During the melting, casting, forging and the application environment, the TiAl alloys also are always inevitable to be contaminated by the O. In this work, the high Nb containing Ti-46Al-8Nb-xO alloys (atomic fraction) were prepared by non-consumable vacuum arc remelting under the protection of Ar atmosphere. The aim of the present work is to study the influence and the corresponding mechanism of oxygen atoms on the microstructure evolution and phase transformation of high Nb-TiAl alloys. The results indicate that oxygen atoms in Ti-46Al-8Nb-xO alloys remarkably increase the amount of α2 phase. The increasing oxygen content leads to the grain refinement. Meanwhile, the duplex microstructures translate into fully lamellar. It indicates that the interstitial oxygen essentially reduces the kinetics of α→γ. Consequently, the fully lamellar is easier formation than the duplex microstructures. It is found that interstitial oxygen atoms preserve significantly influence on the microstructure of Ti-46Al-8Nb-xO alloys. With the increase of oxygen content, the β solidification translates into αsolidification and the peritectic reaction α+L→γ moves to a lower Al content. At the same time, the eutectoid reactionα→α2+β shifts to a higher Al content which extends the area of α $ phase. The DSC results show the effect of oxygen on the phase transformation of Ti-46Al-8Nb. The DSC curves indicate that the addition of oxygen increases the eutectoid reaction temperature of Ti-46Al-8Nb-xO alloys, but this effect can be gradually reduced with the further increase of oxygen content.

Key wordshigh Nb containing TiAl alloy    interstitial oxygen    solidification behavior    phase transformation
收稿日期: 2013-07-11     
基金资助:

国家自然科学基金项目51001086, 51371144和国家重点基础研究发展计划项目2011CB605503资助

通讯作者: 张铁邦     E-mail: tiebangzhang@nwpu.edu.cn
作者简介: 吴泽恩, 男, 1988年生, 博士生

引用本文:

吴泽恩,胡锐,张铁邦,周欢,寇宏超,李金山. 间隙原子O对高Nb-TiAl合金显微组织与相转变的影响[J]. 金属学报, 10.3724/SP.J.1037.2013.00401.
WU Zeen, HU Rui, ZHANG Tiebang, ZHOU Huan, KOU Hongchao, LI Jinshan. EFFECT OF OXYGEN ON MICROSTRUCTURE AND PHASE TRANSFORMATION OF HIGH Nb CONTAINING TiAl ALLOYS. Acta Metall Sin, 2013, 49(11): 1381-1386.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00401      或      https://www.ams.org.cn/CN/Y2013/V49/I11/1381

[1] Wu X, Hu D, Loretto M H.  J Mater Sci, 2004; 39: 3935

[2] Zhang W J, Lorenz U, Appel F.  Acta Metall, 2000; 48: 2803
[3] Loria E A.  Intermetallics, 2000; 8: 1339
[4] Dimiduk D M.  Mater Sci Eng, 1999; A263: 281
[5] Appel F, Oehring M.  Titanium and Titanium Alloys: Fundamentals and Applications.1st Ed., Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003: 89
[6] Imayev R M, Imayev V M, Oehring M, Appel F.  Intermetallics, 2007; 15: 415
[7] Watson I J, Liss K D, Clemens H, Wallgram W, Schmoelzer T, Hansen T C,Reid M.  Adv Eng Mater, 2009; 11: 932
[8] Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.  J Alloys Compd, 2006; 414: 131
[9] Wang Y H, Lin J P, He Y H, Wang Y L, Chen G L.  Mater Sci Eng, 2007; A471: 82
[10] Hu D, Mei J F, Wickins M, Harding R A.  Scr Mater, 2002; 47: 273
[11] Scheu C, Stergar E, Schober M, Cha L, Clemens H, Bartels A, Schimansky F P,Cerezo A.  Acta Metall, 2009; 57: 1504
[12] Kartavykh A V, Tcherdyntsev V V, Zollinger J.  Mater Chem Phys, 2010; 119: 347
[13] Dong L M, Cui Y Y, Yang Y.  Acta Metall Sin, 2002; 38: 643
(董利民, 崔玉友, 杨锐. 金属学报, 2002; 38: 643)
[14] Zollinger J, Lapin J, Daloz D, Combeau H.  Intermetallics, 2007; 15: 1343
[15] Lamirand M, Bonnentien J L, Ferriere G, Guerin S, Chevalier J P.Scr Mater, 2007; 56: 325
[16] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P.  Intermetallics, 2007; 15: 625
[17] Zhong H, Yang Y L, Li J S, Wang J, Zhang T B, Li S, Zhang J.Mater Lett, 2012; 83: 198
[18] Chen G L, Lin J P.  Physical Metallurgy for Ordered Intermetallics.Beijing: Metallurgical Industry Press, 1999: 1
(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 1)
[19] Appel F, Wagner R.  Mater Sci Eng, 1998; R22: 187
[20] Wu X.  Intermetallics, 2006; 14: 1114
[21] Ohnuma, I, Fujita Y, Mitsui H, Ishikawa K, Kainuma R, Ishida K.  Acta Metall, 2000; 48: 3113
[22] Menand, A, Huguet A, Nerac-Partaix A.  Acta Metall, 1996; 44: 4729
[23] Lefebvre W, Loiseau A, Thomas M, Menand A.  Philos Mag, 2002; 82A: 2341
[24] Lamirand M, Bonnentien J L, Ferriere G, Guerin S, Chevalier J P.Metall Mater Trans, 2006; 37A: 2369
[25] Jin Y, Wang J N, Yang J, Wang Y.  Scr Mater, 2004; 51, 113
[26] Cheng T T.   Intermetallics, 2000; 8: 29
[27] Perdrix F, Trichet M F, Bonnentien J L, Cornet M, Bigot J.  Intermetallics, 2001; 9: 807
[28] Park H S, Nam S W, Kim N J, Hwang S K.   Scr Mater, 1999; 41: 1197
[1] 田素贵,王欣,谢君,刘臣,郭忠革,刘姣,孙文儒. GH4169G合金热处理期间的相转变特征与机理分析[J]. 金属学报, 2013, 49(7): 845-852.
[2] 曹零勇,郭明星,崔华,蔡元华,张巧霞,胡晓倩,张济山. Al-Mg-Si系合金均匀化过程中β→α相转变动力学研究[J]. 金属学报, 2013, 29(4): 428-434.
[3] 林惠文,周亦胄,张炫,金涛,孙晓峰. 一种含Pt镍基单晶高温合金的凝固行为[J]. 金属学报, 2013, 49(12): 1567-1572.
[4] 方璐,丁贤飞,张来启,郝国建,林均品. 长期热循环条件下全片层高Nb-TiAl合金显微组织稳定性[J]. 金属学报, 2013, 49(11): 1416-1422.
[5] 郑君姿,张来启,侯永明,马向玲,林均品. β-γNb-TiAl合金准等温锻造过程模拟[J]. 金属学报, 2013, 49(11): 1439-1444.
[6] 张永皞 张志清 Robert E. Sanders 刘庆. AA3104铝合金均匀化过程中的(Fe, Mn)Al6相向α-Al12(Fe, Mn)3Si相转变研究[J]. 金属学报, 2012, 48(3): 351-356.
[7] 刘建涛; 林鑫; 吕晓卫; 陈静; 黄卫东 . Ti-Ti2AlNb功能梯度材料的激光立体成形研究[J]. 金属学报, 2008, 44(8): 1006-1012 .
[8] 吕海燕; 李双明; 钟宏; 刘林; 傅恒志 . 激光快速熔凝Cu-75%Sn过包晶合金中ε相向包晶η相的转变[J]. 金属学报, 2008, 44(7): 843-847 .
[9] 颜莹; 金伟; 曹名洲 . Ni47Ti44Nb9形状记忆合金冷轧管材的组织、织构和相变[J]. 金属学报, 2008, 44(2): 139-144 .
[10] 彭晓; 王福会; D.R.; Clarke . 光激发荧光谱术分析Co-Cr-Al(Y)纳米涂层的氧化 I. Al2O3相的表征与相转变[J]. 金属学报, 2003, 39(10): 1055-1059 .
[11] 潘春旭; Y.M.Zhang; A.T.Male . 双面电弧焊的凝固组织特征[J]. 金属学报, 2002, 38(4): 427-432 .
[12] 何国; 边赞; 陈国良 . Zr52.5Ni14.6Al10Cu17.9Ti5块体玻璃合金等温晶化与结构转变[J]. 金属学报, 1999, 35(5): 458-462 .
[13] 马书伟;郑运荣;杜炜;魏朋义;李建国;傅恒志. Ni_3Al+Ni_7Hf_2共晶合金的微观结构及凝固行为研究[J]. 金属学报, 1998, 34(3): 237-241.
[14] 王建强;曾梅光;郝云彦;胡壮麟;王中光. 颗粒弥散铝基纳米合金微结构与力学性能[J]. 金属学报, 1997, 33(10): 1053-1061.
[15] 陈卫德;郑贤淑;金俊泽. 铸锭凝固行为的数值模拟[J]. 金属学报, 1996, 32(10): 1023-1026.