Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 575-580    DOI: 10.3724/SP.J.1037.2009.00708
  论文 本期目录 | 过刊浏览 |
Mg-Zn合金时效过程中GP区析出的热力学分析
王晓亮1); 李长荣1);  郭翠萍1);  杜振民1);  何维2)
1) 北京科技大学材料科学与工程学院; 北京 100083 2) 广西大学材料科学与工程学院; 南宁 530004
PRECIPITATION BEHAVIOR OF GP ZONES DURING AGEING PROCESS OF Mg-Zn ALLOY
WANG Xiaoliang1);  LI Changrong1);  GUO Cuiping1);  DU Zhenmin1);  HE Wei2)
1) School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 2) School of Materials Science and Engineering; University of Guangxi; Nanning 530004
全文: PDF(822 KB)  
摘要: 

利用显微硬度、XRD及TEM分析了Mg-1.9Zn (原子分数, %)二元合金时效硬化现象及GP区的形态和出现的温度范围. 研究结果表明: 在343和383 K时效过程中, 过饱和固溶体中发生Zn原子偏聚, 形成形态不同的GP区; 在423 K时效, 硬化峰值出现较早, 没有典型GP区出现. 利用本文优化获取的镁基固溶体相的热力学参数, 给出镁基过饱和固溶体存在亚稳态溶解度间隙和溶质原子偏聚GP区时Gibbs自由能曲线的特征形式, 确定了具有GP区析出效应的Mg-Zn体系的合金成分范围和时效温度区间.

关键词 Mg-Zn合金低温时效GP区热力学分析    
Abstract

The age--hardening behavior of the Mg-1.9Zn (atomic fraction, %) alloy, morphologies of GP zones and temperature range of GP zone precipitation in the alloy were investigated by micro-hardness, XRD and TEM. The results show that the Zn atoms segregation occurs in the super-saturated solid solution, forming GP zones with different shapes during ageing process at 343 and 383 K; while at 423 K the age-hardening peak occurs earlier but no typical GP zone appeared. Using the thermodynamic parameters of the Mg-Zn system, the Gibbs free energy relations of the Mg-based solid solution phase were calculated, indicating the existences of the metastable miscibility gap and the solute atoms segregation in the super-saturated solid solution. With the reported data and the present experimental results, the ranges of composition and aging temperature for GP zone precipitation in the Mg-Zn alloy were determined.

Key wordsMg-Zn alloy    low temperature ageing    GP zone    thermodynamic analysis
收稿日期: 2009-10-26     
基金资助:

国家自然科学基金项目50731002和50671009以及高等学校博士学科点专项基金项目20060008015资助

通讯作者: 李长荣     E-mail: crli@mater.ustb.edu.cn
Corresponding author: LI Changrong     E-mail: crli@mater.ustb.edu.cn
作者简介: 王晓亮, 男, 1984年生, 硕士生

引用本文:

王晓亮 李长荣 郭翠萍 杜振民 何维. Mg-Zn合金时效过程中GP区析出的热力学分析[J]. 金属学报, 2010, 46(5): 575-580.
YU Xiao-Liang, LI Zhang-Rong, GUO Cui-Ping, DU Zhen-Min, HE Wei. PRECIPITATION BEHAVIOR OF GP ZONES DURING AGEING PROCESS OF Mg-Zn ALLOY. Acta Metall Sin, 2010, 46(5): 575-580.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2009.00708      或      https://www.ams.org.cn/CN/Y2010/V46/I5/575

[1] Yan F Y, Zhang Y H. Modern Manuf Technol Equipt, 2007; (4): 13
(阎峰云, 张玉海. 现代制造技术与装备, 2007; (4): 13)
[2] Zuo T Y. Adv Mater Ind, 2007; (12): 22
(左铁镛. 新材料产业, 2007; (12): 22)
[3] Shen K, Yin Z M, Wang T. Trans Nanjing Univ Aeronaut Astronaut, 2007; 24: 3
[4] Meissner K L. J Inst Met, 1927; 38 : 195
[5] Sturkey L, Clark J B. J Inst Met, 1959; 88: 177
[6] Murakami Y, Kawano O, Tamura H. Trans Jpn Inst Met,1971; 12: 323
[7] Mima G, Tanaka Y. J Jpn Inst Met, 1969; 33: 796
[8] Murakami Y, Kawano K, Tamura H. Mem Fac Eng, 1962; 23: 93
[9] Clark J B. Acta Metall, 1965; 13: 1281
[10] Buha J. Mater Sci Eng, 2008; A492: 11
[11] Agarwal R, Fries S G, Lukas H L. Z Metallkd, 1992; 83: 216
[12] Sundman B. Jansson B, Andersson J O. CALPHAD, 1985; 9: 153
[13] Kaptay G. Calphad, 2004; 28: 115
[14] Chen S L, Zhang F, Daniel S, Xie X F, Yan X Y, Chang Y A, Schmid–Fetzer R, Oates W A. JOM, 2003; 55(12): 48
[15] Clark J B, Zabdyr L, Moser Z. Phase Diagrams of Binary Magnesium Alloys, Metals Park, OH: ASM, 1988: 353

[1] 李勇,郭明星,姜宁,张许凯,张艳,庄林忠,张济山. 汽车用新型Al-0.93Mg-0.78Si-0.20Cu-3.00Zn合金的制备及其时效析出行为研究*[J]. 金属学报, 2016, 52(2): 191-201.
[2] 陈满骄,黄健康,何翠翠,石玗,樊丁. Al/镀锌钢板焊接界面区Fe-Al-Zn金属间化合物形成的热力学分析*[J]. 金属学报, 2016, 52(1): 113-119.
[3] 谢君, 于金江, 孙晓峰, 金涛, 孙元. 高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J]. 金属学报, 2015, 51(4): 458-464.
[4] 刚建伟,施斌卿,陈荣石,柯伟. 热轧Mg-1Zn和Mg-1Y合金退火组织演变及静态再结晶行为[J]. 金属学报, 2012, 48(5): 526-533.
[5] 贾成厂; 石田清仁 . Ni-Al系中γ,γ’,β相平衡的实验与热力学分析[J]. 金属学报, 1999, 35(2): 193-197 .
[6] 仝兴存;沈宁福;柳百成. 快速凝固Al─3.18Ti─0.65C合金中TiC相的形成和分布特征[J]. 金属学报, 1994, 30(4): 155-159.