Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00439
  本期目录 | 过刊浏览 |
微合金化显著改善414N硬面层高温耐磨性及其机理
李奇1,2,吴汝飞1,2,先 成1,2,吴轲源3,斯庭智1,2

1 安徽工业大学 材料科学与工程学院   马鞍山 243002

2 马鞍山安博铝基新材料科技有限公司  马鞍山 243131

3 马鞍山旭阳机械有限公司  马鞍山 243121

Significantly Improved High-Temperature Wear Resistance of 414N Hard-Faced Layer by Microalloying and Its Mechanism

LI Qi 1,2, WU Rufei 1,2, XIAN Cheng 1,2, WU Keyuan 3, SI Tingzhi 1,2

1 School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China

2 Maanshan Anbo Aluminum-based New Material Technology Co. Ltd., Maanshan 243131, China

3 Ma’anshan Xuyang Machinery Co. Ltd., Maanshan 243121, China

引用本文:

李奇 吴汝飞 先成 吴轲源 斯庭智. 微合金化显著改善414N硬面层高温耐磨性及其机理[J]. 金属学报, 10.11900/0412.1961.2024.00439.

全文: PDF(4574 KB)  
摘要: 本文基于现用连铸辊414N硬面层,设计了Nb/Ti/V微合金化的MA414N焊丝,并用于硬面层堆焊,研制了一种微合金硬面层。通过高温磨损试验对比了414N与MA414N的高温耐磨性,结果表明,500 ℃~700 ℃,MA414N的磨损量均低于同温度下的414N,在700 ℃时仅为414N的22%,高温耐磨性较414N显著提高;414N硬面层主要产生氧化磨损、磨粒磨损与疲劳磨损,磨损程度随温度升高而增大;MA414N硬面层主要产生氧化磨损,伴随少量磨粒磨损与疲劳磨损,磨损程度随温度升高而减小。结合SEM/EDX、TEM、XRD分析得出,MA414N在高温环境下析出弥散的纳米(Nb, Ti, V)(C, N),产生高温自增强效应,高温耐磨性得以显著提高;其次,微合金化抑制了沿晶(Cr, Fe)23C6的析出,降低了沿晶裂纹萌生与沿晶碳化物剥落的风险,促进磨损面形成更加致密的六方(Fe, Cr)2O3,起到更好的保护作用;此外,微合金化还降低了MA414N中软韧相奥氏体的含量,在提高高温耐磨性方面具有一定贡献。根据研究结果,最终提出了414N和MA414N硬面层高温磨损机制模型。
关键词 硬面层微合金化高温耐磨性磨损行为磨损机理    
Abstract:Based on 414N hard-faced layer, the microalloyed MA414N wire with niobium (Nb), titanium (Ti), and vanadium (V) was designed and used as novel hard-faced layer by build-up welding in this work. High-temperature wear experiments were conducted to compare the wear resistances of 414N and MA414N. It was found that the wear volume of MA414N was remarkable lower than that of 414N at the temperature range of 500 °C to 700 °C. Above all, the wear volume of MA414N is only 22% of the 414N at 700 ℃, clearly showing a significant improvement in high-temperature wear resistance. The high-temperature wear methods are oxidation wear, abrasive wear, and fatigue wear for the 414N hard-faced layer, and its wear rate increased with elevating temperature. However, it was found that the major method is oxidation wear for the MA414N, with a small number of abrasive wear and fatigue wear, and the wear rate decreased with elevating temperature. Based on SEM/EDX, TEM, and XRD analyses, it was concluded that the dispersively precipitated nanosized (Nb, Ti, V)(C, N) particles introduced a self-strengthening effect in MA414N during high-temperature wear process, leading to a significantly improved wear resistance. Secondly, microalloying inhibited the precipitation of intergranular (Cr, Fe)23C6, which not only reduced the risk of intergranular crack initiation and carbide spalling, but also promoted the formation of dense hexagonal (Fe, Cr)?O? on wear surface with strong protection. Furthermore, microalloying reduced the content of austenite in MA414N during wear process, which also had certain benefits to the improvement of high-temperature wear resistance. According to the above-mentioned results, two models were put forward to explain the high-temperature wear mechanism of 414N and MA414N, respectively.
Key wordshard-faced layer    microalloying    high-temperature wear resistance    wear behavior    wear mechanism
收稿日期: 2024-12-27     
ZTFLH:  TG 422  
基金资助:安徽省科技重大专项
[1] 孙军, 刘刚, 杨冲, 张鹏, 薛航. 耐热铝合金:组织设计与合金制备[J]. 金属学报, 2025, 61(4): 521-525.
[2] 郑雄, 赖玉香, 向雪梅, 陈江华. 稀土元素LaAlMgSi合金性能和微结构的影响[J]. 金属学报, 2024, 60(1): 107-116.
[3] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[4] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[5] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[6] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[7] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[8] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[9] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[10] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[11] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[12] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[13] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[14] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.
[15] 惠亚军,潘辉,周娜,李瑞恒,李文远,刘锟. 650 MPa级V-N微合金化汽车大梁钢强化机制研究*[J]. 金属学报, 2015, 51(12): 1481-1488.