Please wait a minute...
金属学报  2025, Vol. 61 Issue (8): 1129-1140    DOI: 10.11900/0412.1961.2023.00220
  研究论文 本期目录 | 过刊浏览 |
6061铝合金搅拌摩擦增材制造显微组织演变及力学性能
杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤()
北京科技大学 材料科学与工程学院 北京 100083
Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing
YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
Fan YANG, Shichao PEI, Xinrui LUO, Yuxiang CHEN, Ningyu LI, Yongqin CHANG. Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. Acta Metall Sin, 2025, 61(8): 1129-1140.

全文: PDF(4747 KB)   HTML
摘要: 

搅拌摩擦增材制造(friction stir additive manufacturing,FSAM)是一种先进的固相成形技术,目前研究主要集中在对铝合金、镁合金等的FSAM成形工艺进行参数优化以减少缺陷,从而替代传统有热源的成形方式,但对于成形过程中材料的微观组织演变研究相对较少。本工作以2 mm厚的6061铝板为基材,采用FSAM技术在垂直方向成功实现了多层无孔洞缺陷材料的构建。通过微观表征及性能测试研究了成形件沿构建方向的组织演变和力学性能变化规律。结果表明,成形区发生了动态再结晶,获得了细小的等轴晶粒,界面过渡区经历搅拌头的二次搅拌作用后晶粒进一步细化。成形区整体抗拉强度为母材强度的47.7%~55.2%,延伸率提高到母材的144.6%~148.8%,上、下板重叠界面由于经历多次热循环,力学性能较差。球状的α-Al(MnCrFe)Si在基体中起强化作用,FSAM过程中强化相的大量溶解是成形试样力学性能大幅下降的主要原因。经过520 ℃固溶1 h和165 ℃时效18 h热处理后,成形试样的力学性能显著提高,硬度略高于母材,抗拉强度恢复到母材的87.2%~91.9%。

关键词 搅拌摩擦增材制造Al-Si-Mg-Cu合金焊后热处理钩状缺陷晶粒异常长大    
Abstract

Friction stir additive manufacturing (FSAM) is an advanced solid-phase forming technology based on the principle of friction stir. As no heat source is required, the FSAM process can avoid metallurgical defects during melting and solidification of the material. The FSAM also conserves energy and protects the environment. To replace the traditional forming technology with a heat source, current research aims to optimize the forming process parameters of aluminum and magnesium alloys. Similarly to the friction stir welding process, increasing the temperature in the FSAM process will dissolve part of the strengthening phase, coarsening the particles and softening the welding core area. In addition, during layer-by-layer stacking in FSAM, the stir tool will re-stir the previously formed area, introducing a new thermal cycle during the stirring process. Because the changes in the temperature and stress field are more complex in the FSAM process than in the friction stir welding process, the influence of microstructure evolution on the mechanical properties of materials in the FSAM process is worthy of investigation. In this study, a multilayer defect-free FSAM material was fabricated from 2-mm-thick 6061 aluminum alloy sheets. The microstructural evolution along the building direction was observed during the FSAM process to investigate its effect on the microhardness and tensile properties. Dynamic crystallization formed fine equiaxed grains in the stir zone, which were further refined after re-stirring in the overlapping interface regions. The tensile strength and elongation of the FSAM material were 47.7%-55.2% and 144.6%-148.8% those of the base material, respectively. Multiple thermal cycling weakens the performance of the overlapping interface regions. The spherical α-Al(MnCrFe)Si phase plays a strengthening role in the matrix. Extensive dissolution of the strengthening phase during the FSAM process is mainly responsible for the performance deterioration of the FSAM material. After heat treatment at 520 oC for 1 h and at 165 oC for 18 h of aging, the properties of the FSAM material were largely improved: the hardness slightly increased from that of the base material and the tensile strength reached 87.2%-91.9% that of the base material.

Key wordsfriction stir additive manufacturing    Al-Si-Mg-Cu alloy    post-weld heat treatment    hooking defect    abnormal grain growth
收稿日期: 2023-05-12     
ZTFLH:  TG453.9  
基金资助:国家自然科学基金项目(11775017);国家自然科学基金项目(51971021)
通讯作者: 常永勤,chang@ustb.edu.cn,主要从事搅拌摩擦焊接、新型金属材料制备等研究
Corresponding author: CHANG Yongqin, professor, Tel: 13522569036, E-mail: chang@ustb.edu.cn
作者简介: 杨 帆,男,1998年生,硕士
图1  搅拌头形状及搅拌摩擦增材制造(FSAM)成形过程示意图
图2  拉伸试样尺寸及取样位置示意图
图3  6061铝合金FSAM成形试样截面微观组织的OM像
图4  EBSD观察取样位置
图5  6061铝合金母材及FSAM试样的反极图(IPF)及晶界特征图
PositionNumber fraction / %

Grain size

μm

2° ≤ θ <15°θ ≥ 15°
BM62.937.120.7 ± 9.6
FSAM-134.565.55.1 ± 2.3
FSAM-228.271.82.6 ± 1.5
FSAM-323.376.72.1 ± 0.8
表1  6061铝合金母材及FSAM试样不同位置的平均晶粒尺寸和晶界含量
图6  6061铝合金母材及FSAM试样在Euler角φ2 = 0°和φ2 = 45°的取向分布函数(ODF)图及织构分布
图7  6061铝合金FSAM成形试样沿构建方向和垂直于构建方向硬度分布
图8  6061铝合金FSAM成形试样及其经焊后热处理(PWHT)后沿构建方向的硬度分布,及PWHT态试样沿垂直于构建方向的硬度分布
图9  6061铝合金母材、FSAM成形态及PWHT态试样的应力-应变曲线
SampleUTS / MPaYS / MPaEL / %
BM344.8276.916.8
FSAW-top190.599.724.9
FSAW-middle165.295.325.0
FSAW-bottom164.490.024.3
PWHT-top317.0277.810.8
PWHT-middle300.7230.517.1
PWHT-bottom306.5267.713.0
表2  6061铝合金母材、FSAM成形态及PWHT态试样的拉伸性能
图10  6061铝合金母材及PWHT态试样显微组织的OM像
图11  6061铝合金母材、FSAM成形态和PWHT态试样的TEM明场像
图12  6061铝合金母材、FSAM成形态和PWHT态试样中析出相粒径分布、平均直径和数密度
图13  PWHT态试样的高角环形暗场(HAADF)像及EDS元素面分布图
图14  PWHT态试样中析出相的TEM像及EDS分析结果
图15  PWHT态试样中不同析出相的TEM明场像及对应的选区电子衍射花样
图16  6061铝合金母材、FSAM成形态和PWHT态试样拉伸断口宏观形貌和显微组织的SEM像
[1] Altıparmak S C, Yardley V A, Shi Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing [J]. Int. J. Lightweight Mater. Manuf., 2021, 4: 246
[2] Mishra A, Agarwal R, Kumar N, et al. A critical review on the additive manufacturing of aluminium alloys [J]. Mater. Today: Proc., 2021, 47: 4074
[3] Kim S, Moon S K. A part consolidation design method for additive manufacturing based on product disassembly complexity [J]. Appl. Sci. (Basel), 2020, 10: 1100
[4] Karayel E, Bozkurt Y. Additive manufacturing method and different welding applications [J]. J. Mater. Res. Technol., 2020, 9: 11424
doi: 10.1016/j.jmrt.2020.08.039
[5] He P F, Wei Z Y, Wang Y C, et al. A novel droplet + arc additive manufacturing for aluminum alloy: Method, microstructure and mechanical properties [J]. Addit. Manuf., 2023, 61: 103356
[6] Xiao Y C, Li Y, Shi L, et al. Experimental and numerical analysis of friction stir additive manufacturing of 2024 aluminium alloy [J]. Mater. Today Commun., 2023, 35: 105639
[7] Carroll B E, Otis R A, Borgonia J P, et al. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling [J]. Acta Mater., 2016, 108: 46
[8] Khodabakhshi F, Gerlich A P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review [J]. J. Manuf. Process., 2018, 36: 77
[9] Rometsch P A, Zhu Y M, Wu X H, et al. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion [J]. Mater. Des., 2022, 219: 110779
[10] Hauser T, Reisch R T, Breese P P, et al. Porosity in wire arc additive manufacturing of aluminium alloys [J]. Addit. Manuf., 2021, 41: 101993
[11] Ahmad Z. Aluminium Alloys—New Trends in Fabrication and Applications [M]. Rijeka Croatia: IntechOpen, 2012: 159
[12] Li H Z, Wang C M, Zhang H, et al. Research progress of friction stir additive manufacturing technology [J]. Acta Metall. Sin., 2023, 59: 106
doi: 10.11900/0412.1961.2022.00436
[12] 李会朝, 王彩妹, 张 华 等. 搅拌摩擦增材制造技术研究进展 [J]. 金属学报, 2023, 59: 106
doi: 10.11900/0412.1961.2022.00436
[13] Mao Y Q, Ke L M, Huang C P, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1637
[14] Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy [J]. Mater. Des., 2015, 65: 934
[15] Li Y, He C S, Wei J X, et al. Correlation of local microstructures and mechanical properties of Al-Zn-Mg-Cu alloy build fabricated via underwater friction stir additive manufacturing [J]. Mater. Sci. Eng., 2021, A805: 140590
[16] Liu F J, Fu L, Chen H Y. Microstructures and mechanical properties of thin plate aluminium alloy joint prepared by high rotational speed friction stir welding [J]. Acta Metall. Sin., 2017, 53: 1651
doi: 10.11900/0412.1961.2017.00025
[16] 刘奋军, 傅 莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能 [J]. 金属学报, 2017, 53: 1651
doi: 10.11900/0412.1961.2017.00025
[17] Gussev M N, Sridharan N, Norfolk M, et al. Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing [J]. Mater. Sci. Eng., 2017, A684: 606
[18] Nie F H, Dong H G, Chen S, et al. Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints [J]. J. Mater. Sci. Technol., 2018, 34: 551
doi: 10.1016/j.jmst.2016.11.004
[19] Zhang Z, Tan Z J, Li J Y, et al. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 767
[20] Malopheyev S, Vysotskiy I, Kulitskiy V, et al. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy [J]. Mater. Sci. Eng., 2016, A662: 136
[21] Li J Y, Kong S N, Liu C K, et al. Chemical composition effect on microstructures and mechanical properties in friction stir additive manufacturing [J]. Acta. Metall. Sin. (Engl. Lett.), 2022, 35: 1494
[22] Zhao Z J, Yang X Q, Li S L, et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy [J]. J. Manuf. Process., 2019, 38: 396
[23] Yin Y H, Sun N, North T H, et al. Hook formation and mechanical properties in AZ31 friction stir spot welds [J]. J. Mater. Process. Technol., 2010, 210: 2062
[24] Zhang C C, Chang B H, Tao J, et al. Microstructure evolution during friction stir welding of 2024 aluminum alloy [J]. Trans. China Weld. Inst., 2013, 34(3): 57
[24] 张成聪, 常保华, 陶 军 等. 2024铝合金搅拌摩擦焊过程组织演化分析 [J]. 焊接学报, 2013, 34(3): 57
[25] He P D, Webster R F, Yakubov V, et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing [J]. Acta Mater., 2021, 220: 117312
[26] Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2000, A283: 144
[27] Kalinenko A, Vysotskii I, Malopheyev S, et al. Relationship between welding conditions, abnormal grain growth and mechanical performance in friction-stir welded 6061-T6 aluminum alloy [J]. Mater. Sci. Eng., 2021, A817: 141409
[28] Zhang L, Jiao W L, Wei H J, et al. Influence of manganese and pre-heat treatment on microstructure and mechanical properties of Al-Si alloy [J]. Chin. J. Nonferrous Met., 2005, 15: 368
[28] 张 磊, 焦万丽, 尉海军 等. 锰结合预先热处理对铝硅合金中富铁相组织和力学性能的影响 [J]. 中国有色金属学报, 2005, 15: 368
[1] 逯世杰, 王虎, 戴培元, 邓德安. 蠕变对焊后热处理残余应力预测精度和计算效率的影响[J]. 金属学报, 2019, 55(12): 1581-1592.
[2] 李永奎, 权纯逸, 陆善平, 焦清洋, 李世键, 孙忠海. TA15钛合金薄壁焊接件热处理校形研究*[J]. 金属学报, 2016, 52(3): 281-288.
[3] 邸新杰, 邢希学, 王宝森. Inconel 625熔敷金属中δ相的形核与粗化机理*[J]. 金属学报, 2014, 50(3): 323-328.
[4] 赵志浩,徐振,王高松,崔建忠. 微合金化4043铝合金焊丝焊接接头的组织与性能[J]. 金属学报, 2013, 49(8): 946-952.