|
|
6061铝合金搅拌摩擦增材制造显微组织演变及力学性能 |
杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤( ) |
北京科技大学 材料科学与工程学院 北京 100083 |
|
Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing |
YANG Fan, PEI Shichao, LUO Xinrui, CHEN Yuxiang, LI Ningyu, CHANG Yongqin( ) |
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
杨帆, 裴世超, 罗新蕊, 陈宇翔, 李宁宇, 常永勤. 6061铝合金搅拌摩擦增材制造显微组织演变及力学性能[J]. 金属学报, 2025, 61(8): 1129-1140.
Fan YANG,
Shichao PEI,
Xinrui LUO,
Yuxiang CHEN,
Ningyu LI,
Yongqin CHANG.
Microstructure Evolution and Mechanical Properties of 6061 Aluminum Alloy Fabricated by Friction Stir Additive Manufacturing[J]. Acta Metall Sin, 2025, 61(8): 1129-1140.
[1] |
Altıparmak S C, Yardley V A, Shi Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing [J]. Int. J. Lightweight Mater. Manuf., 2021, 4: 246
|
[2] |
Mishra A, Agarwal R, Kumar N, et al. A critical review on the additive manufacturing of aluminium alloys [J]. Mater. Today: Proc., 2021, 47: 4074
|
[3] |
Kim S, Moon S K. A part consolidation design method for additive manufacturing based on product disassembly complexity [J]. Appl. Sci. (Basel), 2020, 10: 1100
|
[4] |
Karayel E, Bozkurt Y. Additive manufacturing method and different welding applications [J]. J. Mater. Res. Technol., 2020, 9: 11424
doi: 10.1016/j.jmrt.2020.08.039
|
[5] |
He P F, Wei Z Y, Wang Y C, et al. A novel droplet + arc additive manufacturing for aluminum alloy: Method, microstructure and mechanical properties [J]. Addit. Manuf., 2023, 61: 103356
|
[6] |
Xiao Y C, Li Y, Shi L, et al. Experimental and numerical analysis of friction stir additive manufacturing of 2024 aluminium alloy [J]. Mater. Today Commun., 2023, 35: 105639
|
[7] |
Carroll B E, Otis R A, Borgonia J P, et al. Functionally graded material of 304L stainless steel and Inconel 625 fabricated by directed energy deposition: Characterization and thermodynamic modeling [J]. Acta Mater., 2016, 108: 46
|
[8] |
Khodabakhshi F, Gerlich A P. Potentials and strategies of solid-state additive friction-stir manufacturing technology: A critical review [J]. J. Manuf. Process., 2018, 36: 77
|
[9] |
Rometsch P A, Zhu Y M, Wu X H, et al. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion [J]. Mater. Des., 2022, 219: 110779
|
[10] |
Hauser T, Reisch R T, Breese P P, et al. Porosity in wire arc additive manufacturing of aluminium alloys [J]. Addit. Manuf., 2021, 41: 101993
|
[11] |
Ahmad Z. Aluminium Alloys—New Trends in Fabrication and Applications [M]. Rijeka Croatia: IntechOpen, 2012: 159
|
[12] |
Li H Z, Wang C M, Zhang H, et al. Research progress of friction stir additive manufacturing technology [J]. Acta Metall. Sin., 2023, 59: 106
doi: 10.11900/0412.1961.2022.00436
|
[12] |
李会朝, 王彩妹, 张 华 等. 搅拌摩擦增材制造技术研究进展 [J]. 金属学报, 2023, 59: 106
doi: 10.11900/0412.1961.2022.00436
|
[13] |
Mao Y Q, Ke L M, Huang C P, et al. Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2016, 83: 1637
|
[14] |
Palanivel S, Nelaturu P, Glass B, et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy [J]. Mater. Des., 2015, 65: 934
|
[15] |
Li Y, He C S, Wei J X, et al. Correlation of local microstructures and mechanical properties of Al-Zn-Mg-Cu alloy build fabricated via underwater friction stir additive manufacturing [J]. Mater. Sci. Eng., 2021, A805: 140590
|
[16] |
Liu F J, Fu L, Chen H Y. Microstructures and mechanical properties of thin plate aluminium alloy joint prepared by high rotational speed friction stir welding [J]. Acta Metall. Sin., 2017, 53: 1651
doi: 10.11900/0412.1961.2017.00025
|
[16] |
刘奋军, 傅 莉, 陈海燕. 铝合金薄板高转速搅拌摩擦焊接头组织与力学性能 [J]. 金属学报, 2017, 53: 1651
doi: 10.11900/0412.1961.2017.00025
|
[17] |
Gussev M N, Sridharan N, Norfolk M, et al. Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing [J]. Mater. Sci. Eng., 2017, A684: 606
|
[18] |
Nie F H, Dong H G, Chen S, et al. Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints [J]. J. Mater. Sci. Technol., 2018, 34: 551
doi: 10.1016/j.jmst.2016.11.004
|
[19] |
Zhang Z, Tan Z J, Li J Y, et al. Experimental and numerical studies of re-stirring and re-heating effects on mechanical properties in friction stir additive manufacturing [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 767
|
[20] |
Malopheyev S, Vysotskiy I, Kulitskiy V, et al. Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy [J]. Mater. Sci. Eng., 2016, A662: 136
|
[21] |
Li J Y, Kong S N, Liu C K, et al. Chemical composition effect on microstructures and mechanical properties in friction stir additive manufacturing [J]. Acta. Metall. Sin. (Engl. Lett.), 2022, 35: 1494
|
[22] |
Zhao Z J, Yang X Q, Li S L, et al. Interfacial bonding features of friction stir additive manufactured build for 2195-T8 aluminum-lithium alloy [J]. J. Manuf. Process., 2019, 38: 396
|
[23] |
Yin Y H, Sun N, North T H, et al. Hook formation and mechanical properties in AZ31 friction stir spot welds [J]. J. Mater. Process. Technol., 2010, 210: 2062
|
[24] |
Zhang C C, Chang B H, Tao J, et al. Microstructure evolution during friction stir welding of 2024 aluminum alloy [J]. Trans. China Weld. Inst., 2013, 34(3): 57
|
[24] |
张成聪, 常保华, 陶 军 等. 2024铝合金搅拌摩擦焊过程组织演化分析 [J]. 焊接学报, 2013, 34(3): 57
|
[25] |
He P D, Webster R F, Yakubov V, et al. Fatigue and dynamic aging behavior of a high strength Al-5024 alloy fabricated by laser powder bed fusion additive manufacturing [J]. Acta Mater., 2021, 220: 117312
|
[26] |
Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys [J]. Mater. Sci. Eng., 2000, A283: 144
|
[27] |
Kalinenko A, Vysotskii I, Malopheyev S, et al. Relationship between welding conditions, abnormal grain growth and mechanical performance in friction-stir welded 6061-T6 aluminum alloy [J]. Mater. Sci. Eng., 2021, A817: 141409
|
[28] |
Zhang L, Jiao W L, Wei H J, et al. Influence of manganese and pre-heat treatment on microstructure and mechanical properties of Al-Si alloy [J]. Chin. J. Nonferrous Met., 2005, 15: 368
|
[28] |
张 磊, 焦万丽, 尉海军 等. 锰结合预先热处理对铝硅合金中富铁相组织和力学性能的影响 [J]. 中国有色金属学报, 2005, 15: 368
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|