Please wait a minute...
金属学报  2019, Vol. 55 Issue (5): 657-663    DOI: 10.11900/0412.1961.2018.00448
  本期目录 | 过刊浏览 |
共沉淀法制备镁基六铝酸镧粉体的性能研究
李㼆1,2,孙超1,宫骏1()
1. 中国科学院金属研究所 沈阳 110016
2. 中国科学院大学 北京 100049
Performance Research of Magnesium Base Lanthanum Hexaaluminate Prepared by Co-Precipitation
Ying LI1,2,Chao SUN1,Jun GONG1()
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
引用本文:

李㼆,孙超,宫骏. 共沉淀法制备镁基六铝酸镧粉体的性能研究[J]. 金属学报, 2019, 55(5): 657-663.
Ying LI, Chao SUN, Jun GONG. Performance Research of Magnesium Base Lanthanum Hexaaluminate Prepared by Co-Precipitation[J]. Acta Metall Sin, 2019, 55(5): 657-663.

全文: PDF(21357 KB)   HTML
摘要: 

用共沉淀法,选取沉淀温度60 ℃,沉淀pH值11.5制备的镁基六铝酸镧前驱粉体,在1500 ℃煅烧5 h后制备出热障涂层陶瓷层材料LaMgAl11O19。采用XRD、TEM、SAED和XPS分析了反应产物的相结构、形貌、半峰全宽和谱强。结果表明,提高沉淀温度制备的前驱粉体磁铅石相生成效率提高;LaMgAl11O19晶体发育良好,晶粒呈六角片方状;前驱粉体煅烧温度在1500 ℃左右,La、Mg、Al、O 4种原子的电子结合能增大,动能减小,反应物趋于稳定;LaMgAl11O19晶胞结晶过程中先生成尖晶石层,后形成镜面层。生成纯磁铅石相粉体的过程中,LaAlO3、MgAl2O4键的半峰宽度有增大,晶体结构无序度增加,有利于提高陶瓷层的抗烧结能力及热稳定性。关键词 磁铅石相,六铝酸镧,晶体结构,原子成键

Abstract

Thermal barrier coatings are widely used on turbine blades to provide high temperature insulation, oxidation and corrosion protection. Thermal barrier coatings are composed of matrix, oxide layer, bonding layer and ceramic layer. The lanthanum magnesium hexaaluminate with magnetoplumbite structure have a high aspect ratio, large specific surface area and strong resistance to high temperature sintering, and it can be used as ceramic layer of thermal barrier coatings. In this work, the former powders of lanthanum magnesium hexaaluminate was prepared at synthesized temperature of 60 ℃, pH=11.5. Comparing with the conventional chemical co-preparation synthesis, the synthesized temperature was raised and the pH value for synthesizing was reduced, which resulted in improving production efficiency of former powders. And the lanthanum magnesium hexaaluminate powders for ceramic layer of thermal barrier coating was prepared after the precursor powders were calcinated at 1500 ℃ for 5 h. The phase structure of reaction products, morphology of the powders, full width at half maximum and spectral intensity were analyzed by XRD, SEM, TEM and XPS. The results showed that the magnetoplumbite structured formation generation was elevated much more efficiency if the former powders were precipitated at higher temperature. Since the bonding energy of La, Mg, Al and O atoms increased, the kinetic energy of electrons decreased, therefore, chemical composition of the reaction products were steady near 1500 ℃. During the crystallization process of lanthanum magnesium hexaaluminate, the spinel layer was generated firstly and mirror layer was consequently produced. In the process of producing pure magnetoplumbite phase powders, the full width at half maximum of LaAlO3 formula and MgAl2O4 formula were increased and the activation energy of the crystal structure was higher than that before reaction, which was beneficial to improve anti-sintering performance and thermal stability of the ceramic coating.

Key wordsmagnetoplumbite phase    lanthanum hexaaluminate    crystal structure    atomic bonding
收稿日期: 2018-09-19     
ZTFLH:  TG174.442  
基金资助:国家自然科学基金项目(51301180)
作者简介: 李㼆, 女,1988年生,博士生
图1  前驱粉体在不同温度煅烧后的XRD谱
图2  沉淀pH=11.5、沉淀温度为60 ℃下制备的前驱粉体在1500 ℃煅烧5 h后得到的LaMgAl11O19粉体的SEM像及TEM明场像
Temperature / ℃Al2pMg1sLa3dO1s
100073.171302.92836.91532.06
110073.241302.99837.02532.10
120073.231303.43837.14532.20
130073.101303.11837.20532.13
140073.051303.46837.07532.02
150073.411303.48837.24532.20
表1  不同温度下煅烧后的粉体原子结合能
图3  沉淀pH=11.5、沉淀温度为60 ℃下制备的前驱粉体在1500 ℃煅烧5 h得到的LaMgAl11O19粉体的XPS全谱图
图4  沉淀pH=11.5、沉淀温度为60 ℃下制备的前驱粉体在1500 ℃煅烧5 h得到的LaMgAl11O19粉体中La3d、Al2p、Mg2p、O1s峰的XPS拟合谱
图5  La2O3、LaAlO3、MgAl2O4的半峰全宽及LaAlO3与La2O3键含量
[1] XuH B, GongS K, LiuF S. Recent development in materials design of thermal barrier coatings for gas turbine [J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(1): 7
[1] (徐惠彬, 宫声凯, 刘福顺. 航空发动机热障涂层材料体系的研究 [J]. 航空学报, 2000, 21(1): 7)
[2] ClarkeD R, PhillpotS R. Thermal barrier coating materials[J]. Mater. Today, 2005, 8(6): 22
[3] LiP Z, XieM, ZhaoM, et a1. Preparation and characterization of LaMgAl11O19 used as thermal barrier coat materials [J]. Chin. Rare Earth,2010, 31(1): 26
[3] (李培忠, 谢 敏, 赵 鸣等. 镁基六铝酸镧热障涂层材料的制备及表征 [J].稀土,2010, 31(1): 26)
[4] FriedrichC J, GadowR, LischkaM H. Lanthanum hexaaluminate thermal barrier coatings[A]. 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, Volume 22[C]. Westervill, OH: American Ceramic Society, 2001: 375
[5] MachidaM, EguchiK, AraiH. Analytical electron microscope analysis of the formation of BaO·6Al2O3[J]. Am. Ceram. Soc., 1988, 71: 1142
[6] GadowR, LischkaM. Lanthanum hexaaluminate-novel thermal barrier coatings for turbine applications—Materials and process development[J]. Surf. Coat. Technol., 2002, 151-152: 392
[7] LuH R, WangC A, ZhangC G. Influence of Ln3+ and B3+ ions co-substitution on thermophysical properties of LnMgB11O19-type magnetoplumbite LaMgAl11O19 for advanced thermal barrier coatings[J]. J. Am. Ceram. Soc., 2013, 96: 1063
[8] QiF, FanZ S, SunD B, et al. Preparation of LaMgAl11O19 spray powder—A new thermal barrier coatings material [J]. J. Mater. Eng.,2006, (7): 14
[8] (齐 峰, 樊自拴, 孙冬柏等.新型热障涂层材料镁基六铝酸镧喷涂粉末的制备 [J]. 材料工程, 2006, (7): 14)
[9] LiP Z. A Study on preparation and thermophysical properties of LaMgAl11O19 for thermal barrier coating[D]. Baotou: Inner Monggolia University of Science & Technology, 2009
[9] 李培忠. 镁基六铝酸镧热障涂层材料的制备及热物理性能研究 [D]. 包头: 内蒙古科技大学, 2009
[10] HuangL L, MengH M, ChenL. Research status of hexaaluminate thermal barrier coatings with magnetoplumbite structure [J]. J. Mater. Eng., 2013, (12): 92
[10] (黄亮亮,孟惠民,陈 龙. 磁铅石结构六铝酸盐热障涂层的研究现状 [J].材料工程,2013, (12): 92)
[11] BansalN P, ZhuD M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings[J]. Surf. Coat Technol., 2008, 202: 2698
[12] MinX. Optical-optical conversion, heat-optical conversion, and thermal conduction properties of magnetoplumbite hexaaluminate[D]. Beijing: China University of Geosciences (Beijing), 2016
[12] (闵 鑫. 磁铅石结构铝酸盐的光-光、热-光及热传导性能的研究 [D]. 北京: 中国地质大学(北京), 2016)
[13] WuH D, ZhangJ H, LeiX R, et a1. Preparation of lanthanum magnesium hexaaluminate powder and characterization by in-situ high temperature X-ray diffraction [J]. Rare Met. Mater. Eng.,2018, 47(suppl): 59
[13] (吴红丹,张锦化,雷新荣等. 镁基六铝酸镧粉体的制备及高温原位XRD研究 [J]. 稀有金属材料与工程, 2018, 47(增刊):59)
[14] WangY H, LiuZ G, OuyangJ H, et a1. Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12 ceramic composites[J]. Ceram. Int.,2011, 37: 2489
[15] LiT J, LiY, LiW, et a1. Effect of heat treatment on porosity and thermal conductivity of thermal barrier coatings [J]. Mater. Prot.,2017, 50(9): 23
[15] (李太江,李 勇,李 魏等. 热处理对热障涂层孔隙率及热导率的影响 [J]. 材料保护, 2017, 50(9): 23)
[16] JiangB, FangM H, HuangZ H, et a1. Mechanical and thermal properties of LaMgAl11O19[J]. Mater. Res. Bull.,2010, 45: 1506
[17] LiJ H, MaiZ H, CuiS F. X-ray double-crystal diffraction and topography study of strain relaxed InGaAs/GaAs superlattices [J]. Acta Phys. Sin., 1993, 42: 1485
[17] (李建华, 麦振洪, 崔树范. 应变弛豫InGaAs/GaAs超晶格的X射线双晶衍射及形貌研究 [J].物理学报, 1993, 42: 1485)
[18] KrupinO, BihlmayerG, StarkeK, et al. Rashba effect at magnetic metal surfaces[J]. Phys. Rev., 2005, 71B: 201403
[19] GrosvenorA P, CavellR G, MarA. X-ray photoelectron spectroscopy study of the skutterudites LaFe4Sb12, CeFe4Sb12, CoSb3, and CoP3[J]. Phys. Rev., 2006, 74B: 125102
[20] GrosvenorA P, CavellR G, MarA. X-ray photoelectron spectroscopy study of rare-earth filled skutterudites LaFe4P12 and CeFe4P12[J]. Chem. Mater., 2006, 18: 1650
[21] ShenL H, WangN, XiaoX. Strong orange luminescence from AlN whiskers[J]. Mater. Lett., 2013, 94: 150
[22] YuY D, XieS S, BoysenH. Investigation of LaAlO3 crystal structure [J]. Acta Phys. Sin., 1993, 42: 605
[22] (俞育德, 解思深, BoysenH. LaAlO3晶体结构的研究 [J]. 物理学报, 1993, 42: 605)
[23] AxeJ D, ShiraneG, MüllerK A. Zone-boundary phonon instability in cubic LaAlO3[J]. Phys. Rev., 1969, 183: 820
[24] MuellerK A. Effective-spin Hamiltonian for non-kramers doublets[J]. Phys. Rev. Lett., 1968, 171: 350
[25] TaylorT N. The surface composition of silicon carbide powders and whiskers: An XPS study[J]. J. Mater. Res., 1989, 4: 189
[26] BriggsD, SeahM P. Practical Surface Analysis[M]. New York: John Wiley & Sons, 1983: 1
[27] BarrT L. An ESCA study of the termination of the passivation of elemental metals[J]. J. Phys. Chem., 1978, 82: 1801
[28] BoroninA I, KoscheevS V, MalakhovV F, et al. Study of high-temperature oxygen states on the silver surface by XPS and UPS[J]. Catal. Lett., 1997, 47: 111
[29] XuJ, MaX S, ShenY F, et al. Crystal morphology of magnetoplumbite LaMgAl11O19 [J]. Chin. J. Mater. Res., 1991, 5: 502
[29] (徐 军, 马笑山, 沈雅芳等. 磁铅石结构晶体LaMgAl11O19形态学 [J]. 材料科学进展, 1991, 5: 502)
[30] ScheetzB E, WhiteW B. Characterization of anion disorder in zirconate A2B2O7 compounds by Raman spectroscopy[J]. J. Am. Ceram. Soc., 1979, 62: 468
[31] HessN J, BeggB D, ConradsonS D, et al. Spectroscopic investigations of the structural phase transition in Gd2(Ti1-yZry)2O7 pyrochlores[J]. J. Phys. Chem., 2002, 106B: 4663
[32] FriedrichC, GadowR, SchirmerT. Lanthanum hexaaluminate—A new material for atmospheric plasma spraying of advanced thermal barrier coatings[J]. J. Therm. Spray Technol., 2001, 10: 592
[33] XuJ, MaX S, ZhangX M, et al. The relation between structure and morphology of magnetoplumbite-type crystal LaMgAl11O19[J]. Cryst. Res. Technol., 1993, 28: 365
[1] 梁秀兵 张志彬 陈永雄 徐滨士. 铝基非晶纳米晶复合涂层研究[J]. 金属学报, 2012, 48(3): 289-297.
[2] 徐娜 张甲 侯万良 全明秀 李荣德 常新春. 热处理对高温固体自润滑涂层组织结构及结合强度的影响[J]. 金属学报, 2009, 45(8): 943-948.
[3] 周香林; 苏贤涌; 崔华; 郭辉华; 巫湘坤; 张济山 . 颗粒材料特性对冷喷涂撞击行为影响的模拟研究[J]. 金属学报, 2008, 44(11): 1286-1291 .
[4] 潘冶; 王春明; 郑仲瑜; 佟晓辉 . 等离子喷涂纳米SiCf/FeS复合涂层的摩擦学性能[J]. 金属学报, 2008, 44(4): 463-466 .
[5] 陈荣发; 左敦稳; 李多生; 相炳坤; 赵礼刚; 王珉 . 甲烷浓度对等离子喷射金刚石厚膜生长稳定性的影响[J]. 金属学报, 2005, 41(10): 1091-1094 .
[6] 吕宇鹏; 李士同; 梁栋科; 朱瑞富; 李木森; 雷廷权 . 等离子体熔融钛与羟基磷灰石混合粉颗粒的形态和相组成[J]. 金属学报, 2002, 38(12): 1292-1294 .
[7] 刘长松; 刘永合 . 输入焓对火焰喷涂合成TiC-Fe涂层的影响[J]. 金属学报, 2000, 36(11): 1209-1212 .
[8] 李远士; 牛焱 . Fe—Cu纳米涂层在700与800℃空气中的氧化[J]. 金属学报, 2000, 36(8): 847-850 .
[9] 刘长松; 刘永合 . 火焰喷涂合成TiC—Fe涂层的热力学分析[J]. 金属学报, 2000, 36(1): 62-66 .
[10] 潘文霞; 吴承康 . 氮化铝基板与Cu和Al的接合及其表面改质效果[J]. 金属学报, 2000, 36(1): 67-71 .
[11] 马岳; 段祝平; 吴承康 . 激光熔覆对改善等离子涂层界面结合性能的研究[J]. 金属学报, 1999, 35(9): 985-988 .