Please wait a minute...
金属学报  2016, Vol. 52 Issue (2): 151-160    DOI: 10.11900/0412.1961.2015.00414
  论文 本期目录 | 过刊浏览 |
多组织因素对GH4738合金裂纹扩展速率的交互影响*
佴启亮,董建新(),张麦仓,姚志浩
北京科技大学材料科学与工程学院, 北京 100083
INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY
Qiliang NAI,Jianxin DONG(),Maicang ZHANG,Zhihao YAO
School of Materials Scienc and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

佴启亮,董建新,张麦仓,姚志浩. 多组织因素对GH4738合金裂纹扩展速率的交互影响*[J]. 金属学报, 2016, 52(2): 151-160.
Qiliang NAI, Jianxin DONG, Maicang ZHANG, Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. Acta Metall Sin, 2016, 52(2): 151-160.

全文: PDF(9999 KB)   HTML
摘要: 

提出了一种可以综合反映多组织因素对GH4738合金疲劳裂纹扩展速率影响的多组织因素交互影响方程, 并利用不同的热处理制度设计了具有不同组织特征的试样. 测定了经不同热处理制度后GH4738合金在650 ℃下的疲劳裂纹扩展速率. 利用该方程分析了GH4738合金晶粒尺寸、碳化物及γ′相尺寸对疲劳裂纹扩展速率的影响. 结果表明, 多组织因素交互影响方程能很好地定量描述各组织因素对GH4738合金疲劳裂纹扩展速率的影响及其综合影响. 增大晶粒尺寸、降低γ′相及碳化物尺寸均可降低GH4738合金疲劳裂纹扩展速率, 并且晶粒尺寸对GH4738合金的裂纹扩展速率的影响程度要高于γ′相尺寸及碳化物尺寸.

关键词 GH4738合金多组织因素裂纹扩展速率交互影响    
Abstract

The effects of microstructure on the fatigue crack growth behavior of hard-to-deformed GH4738 superalloy have been studied by a number of researchers. However, most of these studies are confined to a single factor, such as the effect of grain size on the fatigue crack growth rate, and show the effect of single factor which do not reflect the combined impacts of multi-microstructure factors. Therefore, there is a need to develop a quantitative approach to predict the effects of multi-microstructure on fatigue crack growth behavior in the design of GH4738 alloy with high damage-tolerant microstructure. A new multi-microstructure factors interaction equation is proposed for the prediction of the effects of grain size, γ′ size and carbide size on fatigue crack growth rate of GH4738 alloy in this work. Different microstructures of GH4738 alloy are produced by different heat treatments (HT) for this equation. The fatigue crack growth experiments are carried out under constant stress ranges on compact tension (CT) specimens at 650 ℃ in air. Subsequently, the effects of grain size, γ′ size and grain boundary carbides size on the fatigue crack growth rate of GH4738 alloy are analyzed by using the interaction equation of multi-microstructure factors. The results show that the equation can well predict the fatigue crack growth rate of GH4738 alloy under different microstructures. The growth rate of fatigue crack in GH4738 can be decreased with increasing grain size and reducing γ′ size and carbide size. The effect of grain size on fatigue crack growth rate is more notice able than that of γ′ and carbide sizes.

Key wordsGH4738 alloy    multi-microstructure factor    fatigue crack growth rate    interaction influence
收稿日期: 2015-07-24     
基金资助:* 国家自然科学基金资助项目51371023
Condition Solution treatment Stabilizing treatment Aging treatment
A 1060 ℃, 4 h+W.Q. - 800 ℃, 16 h+A.C.
B 1100 ℃, 4 h+W.Q. 845 ℃, 24 h+A.C. 760 ℃, 24 h+A.C.
C 1120 ℃, 4 h+W.Q. 845 ℃, 4 h+A.C. 760 ℃, 8 h+A.C.
D 1140 ℃, 4 h+W.Q. 845 ℃, 48 h+A.C. 760 ℃, 16 h+A.C.
E 1160 ℃, 4 h+W.Q. - 800 ℃, 50 h+A.C.
表1  GH4738合金热处理制度
图1  裂纹扩展速率实验标准紧凑拉伸(CT)试样
图2  GH4738合金在1060, 1120和1160 ℃固溶4 h后显微组织的OM像
图3  热处理制度A, B, D和E下GH4738合金晶界碳化物形貌
图4  不同热处理制度下GH4738合金中的γ′相形貌
Heat treatment Grain size / mm γ′ size / nm Carbide size / nm
A 303.4 49.2 326.4
B 382.1 82.6 517.9
C 423.7 60.4 452.3
D 459.4 102.9 560.5
E 479.3 79.0 350.0
表2  不同热处理制度下GH4738合金中的晶粒尺寸、γ′相尺寸和碳化物尺寸
图5  热处理制度C下合金疲劳裂纹扩展速率曲线及对应的断口形貌
图6  热处理制度A, B和E下的GH4738合金的da/dN-ΔK曲线
图7  热处理制度A, B和E下GH4738合金疲劳源区断口形貌
图8  热处理制度A, B和E下GH4738合金Paris区断口形貌
图9  热处理制度C和D下的da/dN-ΔK曲线
图10  热处理制度C和D下Paris区断口形貌
图11  da/dN预测值与测量值对比
图12  热处理制度A和D下疲劳断口边缘的TEM像
图13  预测da/dN-ΔK曲线与实验曲线对比
[1] Wang Y D, Liang Y S, Wang H W.Aircraft Des, 2009; 29(1): 37
[1] (王远达, 梁永胜, 王宏伟. 飞机设计, 2009; 29(1): 37)
[2] Zou J W, Wang W X.J Aeronaut Mater, 2006, 26: 244
[2] (邹金文, 汪武祥. 航空材料学报, 2006; 26: 244)
[3] Jackson M P, Reed R C.Mater Sci Eng, 1999; A259: 85
[4] Sadananda K, Shahinian P.Metall Trans, 1981; 12A: 343
[5] Duquete D J, Gell M.Metall Trans, 1971; 2: 1325
[6] Woodford D A.Metall Trans, 1981; 12A: 299
[7] Yang J, Dong J X, Zhang M C, Jia J, Tao Y.Acta Metall Sin, 2013; 49: 71
[7] (杨健, 董建新, 张麦仓, 贾健, 陶宇. 金属学报, 2013; 49: 71)
[8] Zhang L N, Dong J X, Zhang M C.Mater Sci Eng, 2013; A587: 168
[9] Torster F, Baumeister G, Albrecht J, Lütjering G, Helm D.Mater Sci Eng, 1997; A234: 189
[10] Gayda J, Miner R V.Metall Trans, 1983; 14A: 2301
[11] Paris P C, Gomez M P, Anderson W E.Trend Eng, 1961; 13: 9
[12] Paris P C, Erdogan F.J Basic Eng, 1963; 85: 528
[13] Walker K.ASTM STP 462, Philadelphia: American Society for Testing and Materials, 1970: 1
[14] Forman R G, Kearney V E, Engle R M.J Basic Eng, 1967; 89: 459
[15] Soboyejo W O, Ni Y, Li Y, Soboyejo A B O, Knott J F.Fatigue Fract Eng Mater Struct, 1998; 21: 541
[16] Merce C, Soboyejo A B O, Soboyejo W O.Acta Mater, 1999; 47: 2727
[17] Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O.Mech Mater, 2004; 36: 161
[18] Gao M, Wei R P.Scr Metall Mater, 1994; 30: 1009
[19] Weaver D S, Semiatin S L.Scr Mater, 2007; 57: 1044
[20] Yao Z H, Dong J X, Zhang M C.J Univ Sci Technol Beijing, 2011; 33: 1501
[20] (姚志浩, 董建新, 张麦仓. 北京科技大学学报, 2011; 33: 1501)
[21] Yao Z H, Dong J X, Zhang M C, Yu Q Y, Zheng L.Trans Mater Heat Treat, 2011; 32(7): 44
[21] (姚志浩, 董建新, 张麦仓, 于秋颖, 郑磊. 材料热处理学报, 2011; 32(7): 44)
[22] Chen Z Q, Tai Q A, Zhao X D, Wang J Y, Li C Y.J Iron Steel Res, 2013; 25(8): 37
[22] (陈仲强, 邰清安, 赵兴东, 王健妍, 李昌永. 钢铁研究学报, 2013; 25(8): 37)
[23] Wang P, Dong J X, Han Y C, Yang L.Mater Mech Eng, 2009; 45(5): 79
[23] (王璞, 董建新, 韩一纯, 杨亮. 机械工程学报, 2009; 45(5): 79)
[24] Gayda J, Miner R V.Int J Fatigue, 1984; 5: 135
[25] Merrick H F, Floreen S.Metall Trans, 1977; 8A: 51
[26] Bartos J, Antolovich S D.Fracture, 1977; 2: 995
[27] Antolovich S D, Jayaraman N.High Temp Technol, 1984; 2: 3
[1] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[3] 李林翰, 董建新, 张麦仓, 姚志浩. GH4738合金涡轮盘锻造过程的集成式模拟及应用*[J]. 金属学报, 2014, 50(7): 821-831.
[4] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[5] 马英杰 李晋伟 雷家峰 唐振云 刘羽寅 杨锐. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响[J]. 金属学报, 2010, 46(9): 1086-1092.
[6] 熊缨 陈冰冰 郑三龙 高增梁. 16MnR钢在不同条件下的疲劳裂纹扩展规律[J]. 金属学报, 2009, 45(7): 849-855.
[7] 朱明亮 轩福贞 朱奎龙 王国珍 贾天耀. 热处理对25Cr2NiMo1V钢疲劳特性的影响[J]. 金属学报, 2009, 45(3): 320-325.
[8] 钟勇; 肖福仁; 单以银; 杨柯 . 管线钢的疲劳裂纹扩展速率与疲劳寿命关系的研究[J]. 金属学报, 2005, 41(5): 523-528 .
[9] 黄维刚; 方鸿生; 郑燕康 . C-Si-Mn-B贝氏体钢的疲劳裂纹扩展特性[J]. 金属学报, 2001, 37(9): 927-931 .
[10] 李晓; 董建新; 张丽娜; 张麦仓; 胡尧和; 谢锡善; 国为民 . 疲劳保载时间与固溶处理对PM René 95合金高温裂纹扩展速率的影响[J]. 金属学报, 2001, 37(10): 1059-1063 .
[11] 陈文哲;张飒;钱匡武;顾海澄;王中光. 离心喷射沉积Ti-48Al-2Mn-2Nb的疲劳裂纹扩展速率和门槛值[J]. 金属学报, 1998, 34(1): 70-74.
[12] 丁传富;于辉;吴学仁. 30CrMnSiNi2A高强钢的疲劳小裂纹扩展特性及寿命预测[J]. 金属学报, 1997, 33(3): 277-286.
[13] 陈怀宁;陈亮山;斯重遥;谭胜禹;崔光远. 不同冲击波作用区da/dN下降的机理研究[J]. 金属学报, 1993, 29(6): 38-42.
[14] 董建新;谢蔚;徐志超;谢锡善;章守华. Mg及δ相对GH169高温合金力学性能的影响[J]. 金属学报, 1993, 29(6): 22-27.
[15] 田保红;郑世安;吴磊. 高碳Cr—Mo—W钢M/B复相组织疲劳行为研究[J]. 金属学报, 1993, 29(3): 46-50.