机器学习势在铁电材料研究中的应用 |
刘仕, 黄佳玮, 武静 |
Application of Machine Learning Force Fields for Modeling Ferroelectric Materials |
LIU Shi, HUANG Jiawei, WU Jing |
图7 基于通用原子间势模拟的温度与晶格常数的相关性[ |
Fig.7 Correlation of temperature with lattice constant based on generalized interatomic potential simulations (T—tetragonal, C—cubic, R—rhombohedral, O—orthorhombic) (a) PbTiO3 (b) SrTiO3 (c) BaTiO3 (d) Pb0.5Sr0.5TiO3 (e) KNbO3 (f) 0.29PIN-0.45PMN-0.26PT (PIN—Pb(In1/2Nb1/2)O3, PMN—Pb(Mg1/3Nb2/3)O3, PT—PbTiO3) (g) PbZr0.5Ti0.5O3 (h) K0.5Na0.5NbO3 (i) 0.36PIN-0.36PMN-0.28PT |
![]() |