金属学报, 2023, 59(4): 567-576 DOI: 10.11900/0412.1961.2022.00554

研究论文

组元占比对层状纳米孪晶Cu力学行为的影响

万涛1,2, 程钊1, 卢磊,1

1中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016

2中国科学技术大学 材料科学与工程学院 沈阳 110016

Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu

WAN Tao1,2, CHENG Zhao1, LU Lei,1

1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

通讯作者: 卢 磊,llu@imr.ac.cn,主要从事纳米结构金属材料研究

责任编辑: 李海兰

收稿日期: 2022-11-01   修回日期: 2022-12-14  

基金资助: 国家自然科学基金项目(51931010)
国家自然科学基金项目(92163202)
国家自然科学基金项目(52001312)
中国科学院前沿科学重点研究计划项目(GJHZ2029)
中国博士后科学基金(BX20190336)
中国博士后科学基金(2019M661150)
中国科学院金属研究所创新基金项目(2021-PY02)

Corresponding authors: LU Lei, professor, Tel:(024)23971939, E-mail:llu@imr.ac.cn

Received: 2022-11-01   Revised: 2022-12-14  

Fund supported: National Natural Science Foundation of China(51931010)
National Natural Science Foundation of China(92163202)
National Natural Science Foundation of China(52001312)
Key Research Program of Frontier Science and International Partnership Program, Chinese Academy of Sciences(GJHZ2029)
China Postdoctoral Science Foundation(BX20190336)
China Postdoctoral Science Foundation(2019M661150)
Innovation Fund of Institute of Metal Research, Chinese Academy of Sciences(2021-PY02)

作者简介 About authors

万 涛,男,1995年生,博士生

摘要

利用直流电解沉积制备了表层为硬组元、芯部为软组元的3种层状纳米孪晶(LNT) Cu样品,其中软组元占比分别为10%、50%和90%。研究发现:随软组元占比增加,拉伸屈服强度由425 MPa下降至262 MPa,均匀延伸率由5.7%增加至17%。3种LNT Cu的屈服强度均高于利用混合法则计算的平均强度,即表现出明显的额外强化。当组元占比为50%时,LNT Cu在变形过程中的应变局域化被很好地抑制,组元间应变差较小且相互约束作用强,额外强化效应最明显。

关键词: 层状纳米孪晶Cu; 组元占比; 额外强化; 应变局域化; 梯度塑性变形

Abstract

Laminated metals have the potential for achieving better mechanical properties, such as higher strength, ductility, and work hardening ability. The mechanism that leads to these advances stems from the inhomogeneous plastic deformations between soft and hard components where geometrically necessary dislocations (GNDs) are produced while the two adjacent components are mutually constrained. Many structural factors have already been extensively investigated during the optimization of the laminated structure, such as the effect of layer thickness and the strength differential between components on the overall resulting properties. However, the effect of component composition percentage, an important factor for laminated structures, on the mechanical properties and its underlying mechanism remains elusive. To unravel the effect of component composition percentage on the mechanical properties, we used stable nanotwinned structures as components to build laminated nanotwinned (LNT) Cu materials. Three LNT Cu samples with hard components on the surface layers and soft components in the core layer were designed and prepared by direct-current electrodeposition. The soft component percentages were set as 10%, 50%, and 90%. The mechanical behaviors of LNT Cu were explored by uniaxial tensile tests at room temperature. Yield strengths for all three LNT Cu were higher than that estimated by the rule of mixture, indicating an extra strengthening effect from the LNT structure. The LNT Cu containing 50% soft component (LNT-50%) demonstrated the greatest extra strengthening. Interestingly, full-field strain measurements and microstructure characterizations further indicated that the strain localization of LNT-50% was well suppressed and the lateral strain difference between the soft and hard components was obviously reduced. This indicated that the strong mutual constraint between the two components contributed to the greatest extra strengthening.

Keywords: laminated nanotwinned Cu; component percentage; extra strengthening; strain localization; gradient plastic deformation

PDF (2928KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576 DOI:10.11900/0412.1961.2022.00554

WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. Acta Metallurgica Sinica, 2023, 59(4): 567-576 DOI:10.11900/0412.1961.2022.00554

由力学性能差异显著的软、硬组元交替堆叠而成的层状结构金属材料普遍表现出较优异的综合力学性能,如较高的强度、良好的塑性和较强的加工硬化能力等[1~6]。层状结构材料优异的力学性能主要来源于软、硬组元之间的塑性变形不兼容或非均匀变形,形成塑性应变梯度[7~9],产生几何必需位错(GND)[7,10~12]协调塑性变形。这些额外储存的GND能够引起长程背应力,产生额外的强化和加工硬化[2,13,14],进而提升材料的强度和塑性[15~17]。此外,层状结构材料中由于软、硬组元间发生非均匀变形并相互约束,使组元内出现多轴应力状态,也会进一步促进位错储存,有利于实现更好的强度-塑性匹配[18]

如何调控层状结构金属材料的微观结构从而进一步优化其力学性能已有诸多研究,大多集中在组元厚度[1,2,19,20]、组元力学性能差异[13,21,22]、组元分布[14,23,24]等方面。组元厚度的改变会明显影响层状结构的力学性能,当组元厚度从微米减小至纳米尺度,层状结构的强度明显提升,强度-塑性匹配更优。例如,Cu/Cu10Zn层厚从250 μm减小到31 μm,强度和塑性同步提升[25];而Cu-Nb的层厚从1.8 μm减小到15 nm,其强度单调增加,同时还保留了一定的断裂伸长率[26]。层厚减小时,变形过程中位错在层内累积产生类似Hall-Petch模式的强化效果或者单根位错在层内受限滑移产生强化,使得层状结构的强度得到提升[27];另一方面界面附近产生的GND可以提高层状结构的加工硬化能力和塑性[25]。增大组元间的硬度或强度、加工硬化差异,可促进存储更高密度GND,更大程度协调变形不兼容性,改善材料力学性能。例如,组元间硬度差异更大的Cu/Cu30Zn[21]相较于Cu/Cu10Zn,能够产生更高的背应力;而相对于组元间强度差异相同的Cu/Cu32Zn,加工硬化差异更大的Cu/Cu4Zn[13]样品中强化效果更加明显。

此外,组元占比(硬/软组元的体积分数)也是影响层状结构金属材料力学性能的重要因素。Liang等[23]研究了不同Cu/Ni组元占比的三明治结构Ni/Cu/Ni的拉伸断裂行为,Cu组元占比为74% (Cu/Ni层厚比为5.62)时材料强度和韧性断裂的匹配最优,这归因于Ni层对Cu层应变局域化的显著约束作用。Wu等[28]将梯度结构无间隙原子钢(IF钢)视为由两表面梯度纳米晶层和芯部粗晶层构成的三明治层状结构,所测得的屈服强度显著高于混合法则,具有显著的额外强化,并且当梯度纳米晶层的体积分数由16%增加到48%时,额外强化逐渐增大,这主要归因于梯度纳米晶层与粗晶层之间的梯度变形行为和相互约束作用。然而,目前层状结构材料多以纳米晶为组元,在变形过程中常发生晶粒长大[29,30]、位错回复[18]等软化行为,难以在实验中澄清组元占比与组元间约束变形行为及额外强化之间的定量关系。

本工作借助电解沉积纳米孪晶Cu的制备技术可控性程度高、微观结构稳定性高、变形机制清晰等特点[31,32],设计并制备不同组元占比的层状纳米孪晶(LNT) Cu样品。通过室温单轴拉伸实验,深入研究组元占比对LNT Cu强度、塑性和加工硬化率的影响规律,重点关注组元占比与额外强化之间的定量关系。利用全场应变技术测量LNT Cu样品上表面的应变局域化及侧表面的梯度应变分布,分析组元占比对组元间约束变形行为的影响规律。

1 实验方法

均匀纳米孪晶(HNT) Cu样品利用直流电解沉积技术制备获得。电解液为Cu2+浓度为80 g/L的高纯CuSO4溶液,pH = 1。电解液温度分别为20和40℃时,制备2种微观结构尺寸的均匀组元纳米孪晶样品[33],分别命名为HNT-和HNT-。前期研究[34]发现表面为硬组元较表面为软组元的分布设计能获得相对更高的强度,因此本工作设计了3种型组元空间分布的LNT结构,表层均为硬组元,芯部为软组元。通过控制电解液从20℃恒温(获得硬组元)阶梯升温至40℃保持恒温(获得软组元)再阶梯降温至20℃ (获得硬组元)制备LNT Cu样品。所有样品电解沉积总时长均为16 h,电流密度为30 mA/cm2,样品总厚度为400 μm左右。3种样品中组元的沉积时间分别为1.6、8和14.4 h,即组元厚度占比分别为10%、50%、90%,据此本工作中分别命名为LNT-10%、LNT-50%和LNT-90%。

利用Nova NanoSEM 460场发射扫描电镜(SEM)背散射(BSE)模式和Tecnai G2 F20透射电子显微镜(TEM)表征HNT Cu和LNT Cu样品的截面微观结构。对于组元,在SEM照片中随机统计约500个晶粒分别获得2者的平均晶粒尺寸;在TEM照片中随机统计约1000个孪晶片层分别获得2者的平均孪晶片层厚度。

使用Instron 5848微型拉伸试验机进行室温单轴拉伸测试,应变速率为5 × 10-3 s-1。拉伸试样为平板狗骨头状,标距段尺寸为5 mm × 2 mm× 0.4 mm,每组样品至少测试3次以确保数据的可重复性。采用Qness Q60A+显微Vickers硬度计测试样品截面沿厚度方向的硬度分布,施加载荷为50 g,保载时间10 s,每个厚度处测试5次得到平均硬度。

用基于数字图像相关(DIC)的全场应变技术在拉伸过程中原位观测拉伸试样上表面的应变分布。DIC测试前在试样表面先喷白漆作为背底,后喷黑色墨点作为散斑。采用连续拍摄模式采集样品变形过程中的形貌照片,镜头像素分辨率为2.9 μm/pixel,采集速率为1 frame/s。为保证图像采集的清晰度,原位拉伸时应变速率降低为1 × 10-3 s-1。利用LEXT OLS4000激光共聚焦显微镜(CLSM)表征拉伸试样侧表面变形前后的高度起伏,其高度差分辨率为10 nm。测试前样品经过机械抛光处理以保持表面平整,拉伸变形前后测量同一位置的高度起伏,对各厚度处的高度起伏进行平均。W0为样品初始宽度,根据样品两侧各厚度处拉伸变形前后平均高度差值的净变化(ΔH)计算相对侧向应变(Δεy)[34]

Δεy=2ΔH / W0

2 实验结果

直流电解沉积制备的均匀组元HNT Cu (HNT-和HNT-)沿生长方向的微观结构SEM像如图1a1b1所示,显示2种HNT样品中晶粒均沿生长方向呈柱状晶,晶粒内部分布着高密度的平行孪晶界,孪晶界面大多垂直于生长方向择优排列。TEM观察(图1a2b2)发现,孪晶界清晰平直,孪晶片层内缺陷较少,片层厚度处于纳米量级。统计分布(图1cd)显示,HNT-的短轴晶粒尺寸和孪晶片层厚度的平均尺寸较小,分别为2.8 μm和23 nm,而HNT-的平均晶粒尺寸和孪晶片层厚度均较大,分别为16.5 μm和72 nm。

图1

图1   制备态2种均匀组元纳米孪晶(HNT) Cu的微观结构和晶粒尺寸、孪晶片层厚度,及3种不同组元占比层状纳米孪晶(LNT) Cu微观结构和沿深度方向的硬度分布

Fig.1   SEM and TEM images of HNT- (a1, a2) and HNT- (b1, b2), the distributions of grain size (d) (c) and twin thickness (λ) (d) of HNT- and HNT-; and schematics (e1-g1), SEM images (e2-g2), and hardness distributions (e3-g3) of LNT-10% (e1-e3), LNT-50% (f1-f3), and LNT-90% (g1-g3) (GD—growth direction, HNT—homogeneous nanotwinned, LNT—laminated nanotwinned)


图1e1~g1e2~g2所示分别为3种制备态LNT Cu样品沿生长方向的截面微观结构示意图和SEM像。所有样品上下表层均为硬组元,芯部软组元厚度分别为40、200和360 μm,样品总厚度为400 μm,即软组元的占比分别为10%、50%和90%。3种样品沿生长方向的硬度分布如图1e3~g3所示,表层组元硬度较高(1.5 GPa),而芯部组元硬度较低,仅有0.85 GPa,该硬度与均匀组元硬度相同。LNT Cu中软硬组元间存在过渡区,该过渡区的厚度即界面厚度。所有样品由组元到组元过渡时,界面厚度约为40 μm,该过渡区内硬度呈梯度下降,这是因为电解液温度升高时,晶粒外延生长[35],微观结构尺寸逐渐增大;而组元转变到组元生长时,界面厚度不足20 μm,伴随着硬度陡然增大,这是由于电解液温度降低,晶粒重新形核导致微观结构尺寸突然减小所致。

图2为HNT Cu和LNT Cu样品的室温拉伸工程应力-应变曲线和加工硬化率(Θ)随真应变的变化曲线。如图2a所示,HNT-的屈服强度为434 MPa,均匀延伸率仅为1.6%;HNT-的屈服强度为221 MPa,均匀延伸率高达21.7%。这与此前的研究结果[36]一致,即均匀柱状纳米孪晶Cu的强度随孪晶片层厚度的增大而减小,塑性随晶粒尺寸的增大而增大。

图2

图2   HNT Cu和LNT Cu的拉伸工程应力-应变曲线和加工硬化率-真应变曲线

Fig.2   Engineering stress-strain curves (a) and work hardening rate (Θ) vs true strain curves (b) of LNT Cu and HNT Cu (The endings of elastic-plastic transition are indicated by the intersections of work hardening curves with the dash line at Θ = E / 100 in the inset of Fig.2b, where E is Young's modulus of Cu (120 GPa))


与HNT结构相比,LNT结构具有更好的强度-塑性匹配。相比于HNT-,LNT-10%样品的屈服强度略有下降(425 MPa),但均匀延伸率明显升高(5.7%)。随软组元占比增加,LNT样品的屈服强度随之降低,但均匀延伸率大幅度提高。LNT-90%的屈服强度为262 MPa,均匀延伸率升高为17%。HNT及LNT Cu的室温拉伸性能统计结果总结于表1

表1   LNT Cu和HNT Cu的室温拉伸性能

Table 1  Tensile properties of LNT Cu and HNT Cu samples at room temperature

Sampleσy / MPaσuts / MPaδu / %Δσ / σyROM / %
LNT-10%425 ± 12465 ± 125.7 ± 0.72.9 ± 2.9
LNT-50%372 ± 13419 ± 29.9 ± 0.513.4 ± 4
LNT-90%262 ± 9328 ± 317.0 ± 0.98.3 ± 3.7
HNT-434 ± 9501 ± 141.6 ± 0.1-
HNT-221 ± 13281 ± 621.7 ± 1.6

Note:σy—yield strength,σuts—ultimate tensile strength, δu—uniform elongation, σyROM—yield strength estimated by rule of mixture, Δσ—the increased value between σy and σyROM, Δσ / σyROM—extra strengthening

新窗口打开| 下载CSV


图2b可以看出,HNT-样品的加工硬化曲线呈现典型的两阶段加工硬化:应变量小于2%时为弹塑性转变阶段,加工硬化率急剧下降;应变量大于2%时为塑性变形稳态阶段,加工硬化率缓慢下降。HNT-样品由于均匀延伸率较小,仅可观察到弹塑性转变阶段。相比之下,LNT-10%的加工硬化能力明显提高,且具有较长的塑性变形稳态阶段;LNT-50%的加工硬化率接近于HNT-;LNT-90%的加工硬化率甚至超过了HNT-。以Θ = E / 100 (E为Cu的Young's模量,120 GPa)时对应的应变量来定义弹塑性转变结束点[22]εe-p,如图2b插图所示,LNT-10%和LNT-50%的εe-p几乎相同(1.4%),LNT-90%的εe-p为1.7%,3种LNT Cu的εe-p均高于HNT- (0.7%),弹塑性转变阶段的延长也意味着加工硬化能力的增强。

为进一步研究组元占比对LNT Cu塑性变形行为的影响,观测了LNT Cu在不同拉伸应变时上表面(x-y平面)沿x轴方向应变(εx )的分布(图3a)。从图3b1~b3清晰可见,LNT-10%在施加的拉伸应变εapp = 1%时,表层应变分布较为均匀;随εapp增大,应变集中明显;当εapp增大为5%时,出现非常严重的应变局域化现象。而LNT-50%和LNT-90%样品即使在εapp增大到5%时,应变分布仍较为均匀,可见2者的应变局域化程度较低(图3c1~c3d1~d3)。

图3

图3   LNT Cu拉伸试样和标距段表面散斑示意图,不同拉伸应变下沿x轴方向的应变(εx )分布,拉伸应变5%时的应变分布曲线和应变局域化程度(Δεx )测量示意图,及Δεx 随拉伸应变的变化趋势

Fig.3   Illustration of tensile specimen and spackle pattern on gauge area (a), strain distributions along x axial (εx ) on the surfaces of LNT-10% (b1-b3),LNT-50% (c1-c3), and LNT-90% (d1-d3) at different applied tensile strains (εapp), εx distribution profiles of three LNT Cu samples at εapp = 5% (e) (measured along the white transverse lines in Figs.3b3-d3), and Δεx of three LNT Cu samples at different εapp (f) (Δεx is the increased value between the maximal εx and εapp, as illustrated in Fig.3e)


为定量表征上表面硬组元的应变局域化演变,测量了3种样品在不同εapp时的应变分布曲线上最大应变εxmaxεapp之差,即应变局域化程度:Δεx =εxmax- εapp (图3eεapp = 5%为例)。应变分布曲线沿图3b3~d3中虚线位置(经过各样品中沿x轴方向应变局域化最严重的区域)测得。从图3f可见,εapp从1%增加到5%时,LNT-10%的Δεx 由0.1%急剧增加到2.9%;LNT-90%中Δεx 缓慢增加至1%;而LNT-50%的Δεx 在变形过程中始终最低,εapp = 5%时Δεx 仅增加到0.6%,这表明LNT-50%在初始变形阶段和后续的塑性变形阶段均很好地抑制了应变局域化。

梯度塑性变形也是层状结构金属材料的重要塑性变形行为特征。图4a所示为拉伸试样在变形前后侧表面(x-z平面)的高度起伏测量区域。相对于变形前(εapp = 0)侧表面较微弱的高度起伏(图4b1~d1),拉伸变形后(εapp = 6%) 3种LNT Cu样品侧表面均表现出明显的高度起伏(图4b2~d2)。从图4b2可见,LNT-10%样品中间区域(白色虚线所围区域)的高度较低,即侧向收缩量或应变量较大,表明样品侧面也表现出显著的应变局域化,这与图3b3观察的现象一致。与LNT-10%不同,LNT-50%和LNT-90%侧面均无应变局域化现象,而呈现出明显的梯度变形行为(图4c2d2),芯部软组元的高度低于两侧硬组元,即组元沿y方向的应变大于组元,这与从组元到组元的渐进屈服有关(详见第3节讨论)。

图4

图4   LNT Cu拉伸变形前后侧表面高度起伏轮廓和分布曲线以及相对侧向应变(Δεy)分布

Fig.4   Illustration of tensile specimen and the observed area (a), CLSM images (b1-d1, b2-d2) and corresponding average height profile (b3-d3) and average relative lateral strain (Δεy) (b4-d4) of LNT-10% (b1-b4), LNT-50% (c1-c4), and LNT-90% (d1-d4) deformed at εapp = 0 and 6%, respectively (The area closed by white dashed lines in Fig.4b2 indicates the strain localization zone. |Δεy-| is maximal lateral strain difference between component and , ηy is lateral strain gradient)


根据侧表面的高度起伏,能够进一步获得相对侧向应变Δεy的分布。将侧向高度沿拉伸方向(x轴)平均,可得到平均高度沿着样品厚度方向(z轴)的分布(图4b3~d3)。将拉伸变形后(εapp = 6%)的平均高度减去变形前平均高度,则获得高度起伏的净变化ΔH,由此根据 式(1)计算出Δεy的分布,如图4b4~d4所示。LNT-10%中(图4b4)表层组元的侧向应变|Δεy|略大于组元,两组元间的最大侧向应变差|Δεy-|仅为0.06%,侧向应变梯度ηy (单位样品厚度范围内|Δεy|的变化)仅为3 m-1。值得注意的是,该应变梯度的形成与应变局域化密切相关,处于表层的组元发生了颈缩失稳,产生更大的侧向收缩应变。

相反,LNT-50%中(图4c4)表层组元的侧向应变|Δεy|明显小于组元,|Δεy-|为0.3%,并呈现出显著的梯度变形,ηy为17 m-1。LNT-90%具有更大的|Δεy-| (0.6%)和ηy (31 m-1)。值得注意的是,尽管LNT-50%与LNT-90%均发生显著的梯度塑性变形,但LNT-50%中|Δεy-|较小,这意味着两组元间的约束作用更大,两组元间应变梯度减小,塑性变形更加一致。

不同组元占比造成的不同程度的抑制应变局域化和梯度塑性变形会导致微观结构演变产生差异,为探究这种差异,在3种LNT Cu样品拉伸断口附近选取变形量相近(截面收缩真应变εT ≈ 35%)的区域进行微观结构观察。从图5可以看出,3种样品严重塑性变形后的微观结构明显不同。LNT-10%中出现贯穿晶粒的剪切变形带(图5a1a2虚线所围区域),表现出明显的局域剪切变形特征[37]。组元中部分柱状晶破碎,剪切变形带宽度为1~3 μm,变形带内的纳米孪晶结构被细小的晶粒或位错结构所取代;组元内的变形带宽度超过10 μm,出现严重的退孪生现象(图5a2箭头所指),但仍有部分晶粒保留纳米孪晶结构,这与图3b3中观察到的严重的应变局域化行为一致。

图5

图5   3种LNT Cu拉伸试样断口附近硬组元和软组元的微观组织(截面收缩真应变εT ≈ 35%)

Fig.5   Microstructures of hard component (a1-c1) and soft component (a2-c2) of LNT-10% (a1, a2), LNT-50% (b1, b2), and LNT-90% (c1, c2) after tensile fracture (The areas circled by dashed lines in Figs.5a1 and a2 indicate the shear bands after deformation and the arrow in Figs.5a2 indicates detwinning. The true stain is estimated from area reduction after tensile deformation εT ≈ 35%)


LNT-50% (图5b1b2)严重变形后虽然无明显剪切变形带,但柱状晶形貌变得不完整。组元的晶粒内仍可分辨部分孪晶界;组元内晶粒的塑性变形程度更为剧烈,晶界和晶粒内的孪晶界几乎不能分辨,并且晶内出现了一些沿着柱状晶长轴方向的取向衬度,这可能与晶粒内形成位错结构有关。如图5c1c2所示,LNT-90%中两组元仍呈现典型的柱状晶形貌,晶界清晰可见,晶内孪晶片层结构相对完整,与均匀组元的变形形貌相同。

3 分析讨论

以上实验结果表明,LNT Cu具有良好的强度-塑性匹配,而且组元占比显著影响其力学性能。随着软组元占比增加,LNT Cu的强度降低,塑性却显著升高。对于非均匀结构材料,通常利用混合法则估算其屈服强度σyROM[38]

σyROM=fiσi,yEXP

式中,fi 为某组元i占比,σi,yEXP为实验测得相应均匀组元的屈服强度。根据 式(2)估算,LNT-10%、LNT-50%和LNT-90%样品的σyROM分别为413、328和242 MPa。而实验结果表明LNT Cu样品的屈服强度均高于其σyROM,说明产生了额外强化(表1)。进而,LNT Cu的额外强化程度可估算为:

Δσy / σyROM=(σyEXP  σyROM) / σyROM

式中,σyEXP为实验测得的屈服强度。3种LNT样品的额外强化程度分别为2.9%、13.4%和8.3%。显然,组元占比为50%时LNT Cu的额外强化效果最佳。

层状纳米结构的强化行为与其非均匀变形及相互约束行为密切相关[17,39]。这种非均匀变形及相互约束行为来源于两组元不协调的塑性变形,不仅体现在变形初期的弹塑性转变阶段,而且体现在大应变的塑性变形阶段。一般来说,受到外力作用之后,均匀组元软取向的晶粒优先发生塑性变形,而硬取向晶粒塑性变形滞后,由软取向到硬取向晶粒逐渐塑性变形的过程即为弹塑性转变。而LNT Cu在变形初期,除了组元中晶粒间的弹塑性转变之外,还存在软组元到硬组元的弹塑性转变。具体来说,软组元的屈服强度较低,优先发生塑性变形,此时硬组元仍处于弹性变形阶段;随着应变的增加,硬组元也发生屈服进入塑性变形阶段,组元的所有晶粒均发生塑性变形时,LNT Cu完成弹塑性转变,进入塑性变形阶段。在弹塑性转变过程中,由于塑性变形阶段的Poisson比(约0.5)大于弹性变形阶段的Poisson比(约0.3)[40],率先发生塑性变形的软组元侧向应变大于硬组元,以至于前者受到侧向拉应力,而后者受到侧向压应力,从而使得两组元间产生相互约束作用[18,28,41]。如图2b所示,组元占比明显影响LNT Cu的弹塑性转变过程,LNT-90%的弹塑性转变区较长,即硬组元在较大的拉伸应变下才完全进入塑性变形;而LNT-10%和LNT-50%的弹塑性转变区较短,前者是因为组元发生了严重的应变局域化(图3b1~b3),而后者因为在组元较大约束作用下,组元提前进入塑性变形阶段。

当进入塑性变形阶段,LNT Cu样品也充分体现出组元间的相互约束作用。如图3b1~b34b1~b4所示,LNT-10%表现出显著的应变局域化现象,不能呈现梯度塑性变形,其原因在于软组元占比较低,难以约束硬组元的应变局域化,即约束程度很低。LNT-90%样品中,硬组元占比低,2者之间约束作用有所提高,但也表现出一定的应变局域化现象(图3d1~d3)。相反,LNT-50%在塑性变形阶段表现出显著的抑制应变局域化行为(图3c1~c3),这意味着当软硬组元占比相当时,层状结构组元间的相互约束能力更高。

除此之外,组元占比对约束作用的影响在塑性变形阶段还体现在各组元的梯度应变分布上。如图4c4d4所示,LNT-50%和LNT-90%具有相同的宏观拉伸应变(εapp = 6%),但是其侧向应变分布却不相同。对于LNT-90%,硬组元占比低,且处于样品表面(塑性变形更自由),难以约束距离表层较远的芯部软组元的侧向塑性变形,在两组元间形成了显著的侧向应变差或不协调变形。相比之下,LNT-50%样品中软硬组元占比相当,两组元间约束作用较强,组元间侧向应变差或应变梯度较小,两组元变形更加协调。组元占比对约束作用的影响也可通过各组元变形后的微观结构来反映。如图5所示,对于约束作用较低的LNT-10%和LNT-90%,拉伸变形后各组元的微观结构与均匀纳米孪晶结构样品类似,前者出现局域剪切变形特征,后者依然保持典型的柱状晶特征。而与之不同的是,LNT-50%晶粒内部出现明显的由高密度位错引起的取向衬度,导致微观结构呈现显著的塑性变形特征,这与组元间较大的约束作用或侧向应力对位错储存能力的提升密切相关。

综上分析,通过改变软硬组元占比能够调控组元间在弹塑性转变和塑性变形阶段的约束作用程度,进而影响层状纳米结构金属材料的力学性能与变形行为。根据以往研究[2,18,28,39],包括层状结构在内的非均匀结构材料的强化机制一方面来源于组元间存储的GND,其密度与塑性应变梯度成正比,另一方面来源于组元间的约束作用,通过产生多轴的应力状态,促进位错储存。与LNT-90%相比,LNT-50%虽然其塑性应变梯度较小,却具有较大的约束作用和较强的位错储存能力,从而表现出较高程度的额外强化。因此,组元间的约束作用可能是主导组元占比影响LNT Cu额外强化的内在机制。以上结果为高性能层状结构金属材料的发展提供了思路,并对其他含有软硬组元的非均匀结构如梯度结构[42]、双模结构[43]、球壳结构[44]等金属材料的发展具有重要启示作用。

4 结论

(1) LNT Cu的组元占比对其力学性能影响明显。由LNT-10%到LNT-90%,屈服强度从425 MPa下降至262 MPa,均匀延伸率由5.7%增加至17.0%;LNT Cu屈服强度均大于组元混合强度,表现出不同程度的额外强化,当软硬组元占比相当时LNT-50%的额外强化最大,达到13.4%。

(2) LNT Cu组元占比明显影响弹塑性转变阶段和塑性变形阶段两组元间的不协调的塑性变形及相互约束行为。软组元占比较低或较高时,组元间约束作用较小。当软硬组元占比相当时,LNT-50%内的约束作用最强,弹塑性转变区明显变短,塑性变形阶段的应变局域化几乎被完全抑制,组元间侧向应变差减小,变形更加协调。

参考文献

Zhang X, Misra A, Wang H, et al.

Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning

[J]. Acta Mater., 2004, 52: 995

DOI      URL     [本文引用: 2]

Huang C X, Wang Y F, Ma X L, et al.

Interface affected zone for optimal strength and ductility in heterogeneous laminate

[J]. Mater. Today, 2018, 21: 713

DOI      URL     [本文引用: 3]

Göken M, Höppel H W.

Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding

[J]. Adv. Mater., 2011, 23: 2663

DOI      URL    

Koseki T, Inoue J, Nambu S.

Development of multilayer steels for improved combinations of high strength and high ductility

[J]. Mater. Trans., 2014, 55: 227

DOI      URL    

Huang M, Xu C, Fan G H, et al.

Role of layered structure in ductility improvement of layered Ti-Al metal composite

[J]. Acta Mater., 2018, 153: 235

DOI      URL    

Wang Y C, Luo X M, Chen L J, et al.

Enhancement of shear stability of a Fe-based amorphous alloy using electrodeposited Ni layers

[J]. J. Mater. Sci. Technol., 2018, 34: 2283

DOI      [本文引用: 1]

Tensile and fracture behaviors of sandwich-structured composites consisting of a Fe-based amorphous layer with a constant thickness and ultrafine-grained Ni layers with different thicknesses were investigated. The results indicate that the initiation and the stable propagation of the shear band in the amorphous layer was dominated by the Ni layers due to their strong constraint role. The catastrophic fracture of the amorphous layer was postponed in the sandwich composites through properly increasing the constrained Ni layer thickness, which effectively decreased the shear stress on the shear fracture planes of the amorphous layer, and thus led to stable propagation of the primary SB characterized by the increase in the smooth region size of the shear band.

Ashby M F.

The deformation of plastically non-homogeneous materials

[J]. Philos. Mag., 1970, 21: 399

[本文引用: 2]

Fleck N A, Muller G M, Ashby M F, et al.

Strain gradient plasticity: Theory and experiment

[J]. Acta Metall. Mater., 1994, 42: 475

DOI      URL    

Gao H, Huang Y, Nix W D, et al.

Mechanism-based strain gradient plasticity—I. Theory

[J]. J. Mech. Phys. Solids, 1999, 47: 1239

DOI      URL     [本文引用: 1]

Zeng Z, Li X Y, Xu D S, et al.

Gradient plasticity in gradient nano-grained metals

[J]. Extreme Mech. Lett., 2016, 8: 213

DOI      URL     [本文引用: 1]

Kubin L P, Mortensen A.

Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues

[J]. Scr. Mater., 2003, 48: 119

DOI      URL    

Gao H J, Huang Y G.

Geometrically necessary dislocation and size-dependent plasticity

[J]. Scr. Mater., 2003, 48: 113

DOI      URL     [本文引用: 1]

Cao Z, Cheng Z, Xu W, et al.

Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys

[J]. J. Mater. Sci. Technol., 2022, 103: 67

DOI      [本文引用: 3]

To clarify the work hardening discrepancy effect on the strengthening of laminated metals, we designed two laminated Cu/Cu4Zn and Cu/Cu32Zn samples with different layer thicknesses. Cu/Cu4Zn has larger work hardening discrepancy between two constituent layers relative to Cu/Cu32Zn, but the yield strengths of two CuZn constituents are comparable. Uniaxial tensile results suggest Cu/Cu4Zn with larger work hardening discrepancy exhibits a significant strengthening at early deformation stage while Cu/Cu32Zn possesses a better ductility. The underlying mechanisms for the strengthening effect are attributed to more geometrically necessary dislocations accumulated at interfaces and severer strain localization due to the larger work hardening discrepancy.

Ma X L, Huang C X, Xu W Z, et al.

Strain hardening and ductility in a coarse-grain/nanostructure laminate material

[J]. Scr. Mater., 2015, 103: 57

DOI      URL     [本文引用: 2]

Zhu Y T, Wu X L.

Perspective on hetero-deformation induced (HDI) hardening and back stress

[J]. Mater. Res. Lett., 2019, 7: 393

DOI      URL     [本文引用: 1]

Fleck N A, Ashby M F, Hutchinson J W.

The role of geometrically necessary dislocations in giving material strengthening

[J]. Scr. Mater., 2003, 48: 179

DOI      URL    

Wu X L, Zhu Y T.

Gradient and lamellar heterostructures for superior mechanical properties

[J]. MRS Bull., 2021, 46: 244

[本文引用: 2]

Wu X L, Jiang P, Chen L, et al.

Extraordinary strain hardening by gradient structure

[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197

DOI      PMID      [本文引用: 4]

Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

Beyerlein I J, Mara N A, Carpenter J S, et al.

Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation

[J]. J. Mater. Res., 2013, 28: 1799

DOI      URL     [本文引用: 1]

Fu E G, Li N, Misra A, et al.

Mechanical properties of sputtered Cu/V and Al/Nb multilayer films

[J]. Mater. Sci. Eng., 2008, A493: 283

[本文引用: 1]

Wang Y F, Yang M X, Ma X L, et al.

Improved back stress and synergetic strain hardening in coarse-grain/nanostructure laminates

[J]. Mater. Sci. Eng., 2018, A727: 113

[本文引用: 2]

Wan T, Cheng Z, Bu L F, et al.

Work hardening discrepancy designing to strengthening gradient nanotwinned Cu

[J]. Scr. Mater., 2021, 201: 113975

DOI      URL     [本文引用: 2]

Liang F, Tan H F, Zhang B, et al.

Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites

[J]. Scr. Mater., 2017, 134: 28

DOI      URL     [本文引用: 2]

Cuan X Y, Pan J, Cao R Q, et al.

Effect of amorphous layer thickness on the tensile behavior of bulk-sized amorphous Ni-P/crystalline Ni laminates

[J]. Mater. Lett., 2018, 218: 150

DOI      URL     [本文引用: 1]

Ma X L, Huang C X, Moering J, et al.

Mechanical properties of copper/bronze laminates: Role of interfaces

[J]. Acta Mater., 2016, 116: 43

DOI      URL     [本文引用: 2]

Nizolek T, Beyerlein I J, Mara N A, et al.

Tensile behavior and flow stress anisotropy of accumulative roll bonded Cu-Nb nanolaminates

[J]. Appl. Phys. Lett., 2016, 108: 051903

[本文引用: 1]

Misra A, Hirth J P, Hoagland R G.

Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites

[J]. Acta Mater., 2005, 53: 4817

DOI      URL     [本文引用: 1]

Wu X L, Jiang P, Chen L, et al.

Synergetic strengthening by gradient structure

[J]. Mater. Res. Lett., 2014, 2: 185

DOI      URL     [本文引用: 3]

Meyers M A, Mishra A, Benson D J.

Mechanical properties of nanocrystalline materials

[J]. Prog. Mater. Sci., 2006, 51: 427

DOI      URL     [本文引用: 1]

Kwan C C F, Wang Z R.

Strain incompatibility and its influence on grain coarsening during cyclic deformation of ARB copper

[J]. Philos. Mag., 2013, 93: 1065

DOI      URL     [本文引用: 1]

Cheng Z, Zhou H F, Lu Q H, et al.

Extra strengthening and work hardening in gradient nanotwinned metals

[J]. Science, 2018, 362: eaau1925

DOI      URL     [本文引用: 1]

\n Materials with structural gradients often have unique combinations of properties. Gradient-structured materials are found in nature and can be engineered. Cheng\n et al.\n made a structural gradient by introducing gradients of crystallographic twins into copper. This strategy creates bundles of dislocations in the crystal interiors, which makes the metal stronger than any of the individual components. This method offers promise for developing high-performance metals.\n

Lu Q H, You Z S, Huang X X, et al.

Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu

[J]. Acta Mater., 2017, 127: 85

DOI      URL     [本文引用: 1]

Cheng Z, Jin S, Lu L.

Effect of electrolyte temperature on microstructures of direct-current electrodeposited nanotwinned Cu

[J]. Acta Metall. Sin., 2018, 54: 428

DOI      [本文引用: 1]

Nanotwinned (NT) metals are promising structural materials due to their excellent combination of strength and ductility. These superior properties are strongly dependent on the microstructures i.e. the twin length (grain size), the twin thickness and the twin orientation. Understanding the synthesis process and growth mechanism of NT metals is essential for their structure design. In this work, the effect of electrolyte temperature on the microstructures of highly oriented NT Cu samples, including twin thickness and twin length (grain size), are systematically studied. The NT Cu samples were prepared by means of the direct-current electrodeposition at 293, 298, 303, 308 and 313 K, respectively, while other deposition parameters such as current density, concentration of additive and pH value were kept constant. With decreasing the temperature from 313 K to 293 K, the average grain size decreases from 27.6 μm to 2.8 μm and the average twin thickness decreases from 111 nm to 28 nm, which results in an increment of hardness from 0.7 GPa to 1.5 GPa. This is because with decreasing the temperature, the overpotential of cathode for depositing metal elevates, leading to the nucleation rate of both the grain and twin enhanced.

程 钊, 金 帅, 卢 磊.

电解液温度对直流电解沉积纳米孪晶Cu微观结构的影响

[J]. 金属学报, 2018, 54: 428

[本文引用: 1]

Cheng Z, Lu L.

The effect of gradient order on mechanical behaviors of gradient nanotwinned Cu

[J]. Scr. Mater., 2019, 164: 130

DOI      URL     [本文引用: 2]

Chassaing E, Wiart R.

Epitaxial growth and electrode impedance of copper electrodeposits

[J]. Electrochim. Acta, 1984, 29: 649

DOI      URL     [本文引用: 1]

You Z S, Lu L, Lu K.

Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins

[J]. Acta Mater., 2011, 59: 6927

DOI      URL     [本文引用: 1]

Bai J S, Lu Q H, Lu L.

Detwinning behavior induced by local shear strain in nanotwinned Cu

[J]. Acta Metall. Sin., 2015, 52: 491

[本文引用: 1]

白敬胜, 卢秋虹, 卢 磊.

纳米孪晶Cu中局部剪切应变诱导的退孪生行为

[J]. 金属学报, 2015, 52: 491

[本文引用: 1]

Semiatin S L, Piehler H R.

Deformation of sandwich sheet materials in uniaxial tension

[J]. Metall. Trans., 1979, 10A: 85

[本文引用: 1]

Zhu Y T, Ameyama K, Anderson P M, et al.

Heterostructured materials: Superior properties from hetero-zone interaction

[J]. Mater. Res. Lett., 2021, 9: 1

DOI      URL     [本文引用: 2]

Bert C W, Mills E J, Hyler W S.

Effect of variation in Poisson's ratio on plastic tensile instability

[J]. J. Basic Eng., 1967, 89: 35

DOI      URL     [本文引用: 1]

Using the concept of the tensile-instability mechanism which determines the ultimate strength of most of the ductile materials under uniaxial or biaxial tension conditions, two new analyses are carried out. In these are considered an effect previously neglected: Variation of Poisson’s ratio (based on total strain) with strain in the plastic range. One analysis treats a uniaxial tensile specimen, and the predicted results are generally in better agreement with experimental values for seven alloys of aerospace structural importance than the results of classical theory, in which Poisson’s ratio is assumed to remain constant at a value of 1/2 in the plastic range. The other considers a thin-walled spherical shell subject to internal pressure, and the predicted result is again closer to the experimental value than that predicted by classical theory.

Sinclair C W, Saada G, Embury J D.

Role of internal stresses in co-deformed two-phase materials

[J]. Philos. Mag., 2006, 86: 4081

DOI      URL     [本文引用: 1]

Jing L J, Pan Q S, Long J Z, et al.

Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu

[J]. Scr. Mater., 2019, 161: 74

DOI      URL     [本文引用: 1]

Li Y S, Zhang Y, Tao N R, et al.

Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation

[J]. Scr. Mater., 2008, 59: 475

DOI      URL     [本文引用: 1]

Zhang Z, Vajpai S K, Orlov D, et al.

Improvement of mechanical properties in SUS304L steel through the control of bimodal microstructure characteristics

[J]. Mater. Sci. Eng., 2014, A598: 106

[本文引用: 1]

/