金属学报, 2021, 57(1): 103-110 DOI: 10.11900/0412.1961.2020.00158

研究论文

微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响

郑秋菊1,2, 叶中飞3, 江鸿翔1, 卢明3, 张丽丽1, 赵九洲,1,2

1.中国科学院 金属研究所 沈阳 110016

2.中国科学技术大学 材料科学与工程学院 沈阳 110016

3.国网河南省电力公司 电力科学研究院 郑州 450052

Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys

ZHENG Qiuju1,2, YE Zhongfei3, JIANG Hongxiang1, LU Ming3, ZHANG Lili1, ZHAO Jiuzhou,1,2

1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

3.Electric Power Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China

通讯作者: 赵九洲,jzzhao@imr.ac.cn,主要从事合金凝固过程研究

收稿日期: 2020-05-12   修回日期: 2020-06-18   网络出版日期: 2021-01-27

基金资助: 国家自然科学基金项目.  51771210.  51971227
国家电网有限公司总部科技项目.  5500-201924129A-0-0-00

Corresponding authors: ZHAO Jiuzhou, professor, Tel:(024)23971918, E-mail:jzzhao@imr.ac.cn

Received: 2020-05-12   Revised: 2020-06-18   Online: 2021-01-27

作者简介 About authors

郑秋菊,女,1994年生,博士生

摘要

利用DTA、OM、SEM、TEM、EPMA以及拉伸实验等方法研究了在添加α-Al晶粒细化剂Al-Ti-B中间合金和共晶Si变质剂Sr条件下,微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响。结果表明:添加微量稀土La能进一步细化α-Al,变质共晶Si,显著提高合金的塑性。分析表明:微量La能降低α-Al晶核与TiB2的润湿角,减小α-Al的形核过冷度,促进α-Al的进一步细化;La能诱发交错孪晶的形成,增大共晶Si的孪晶密度,改变Si相的长大行为,进一步改变共晶Si的形貌。当La的添加量达到0.10%时,LaAlSi金属间化合物在凝固过程的共晶反应阶段形成,该化合物的形成将降低合金的塑性。

关键词: Al-Si合金 ; 微合金化元素La ; 凝固组织 ; 力学性能

Abstract

Hypoeutectic Al-Si alloys are extensively used in the welding industry owing to their excellent cast-ability, low coefficient of thermal expansion, and good weldability. Unfortunately, Al-Si alloys solidify under conventional cooling conditions, forming coarse dendritic α-Al grains with an eutectic structure and a flake-like morphology that has poor mechanical properties. Chemical inoculations are often used to control the size of α-Al grains and the morphology of the eutectic Si particles. The grain refiner Al-Ti-B master alloy and eutectic Si modifier Sr are commonly used in industry. In recent years, great attention has been paid to controlling the microstructure and mechanical properties of hypoeutectic Al-Si alloys through the use of the cost-effective rare earth element La. Previous studies have mainly focused on the effects of La addition on the microstructural evolution and improvements of the mechanical properties. However, to date there have been no studies on the effects of combined addition of La, Al-Ti-B master alloy and Sr on the microstructure and mechanical properties of Al-Si alloys. In this work, solidification experiments were performed to investigate the effects of the micro-alloying element La, Al-Ti-B master alloy, and Sr on the solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys. These results show that synergistic effects are achieved by combinations of La, Al-Ti-B master alloy, and Sr. An addition of 0.06%La was sufficient for effective α-Al grain refinement, eutectic Si particle modification, and improved the ductility of the alloys. Excess La addition formed a coarse LaAlSi intermetallic compound, which deteriorated the ductility of the alloy. The micro-alloying element La refined the α-Al grains by acting as a surfactant that decreased the wetting angle between the TiB2 nucleation substrate and the α-Al nucleus. It modified the eutectic Si particles by promoting the formation of the multiple Si twins and changing the growth behaviors of the Si particles.

Keywords: Al-Si alloy ; micro-alloying element La ; solidification microstructure ; mechanical property

PDF (18770KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响. 金属学报[J], 2021, 57(1): 103-110 DOI:10.11900/0412.1961.2020.00158

ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys. Acta Metallurgica Sinica[J], 2021, 57(1): 103-110 DOI:10.11900/0412.1961.2020.00158

亚共晶Al-Si合金具有铸造性好,热膨胀系数低,可焊性好等优点,是一种重要的铝合金焊丝材料[1,2]。然而,在常规凝固条件下,亚共晶Al-Si合金的凝固组织常常含有粗大的α-Al晶粒和片状结构的Al-Si共晶组织。因此,合金受力时极易产生应力集中,合金的力学性能较差,尤其是塑性[3,4]。近年来,为了提升合金的力学性能,人们对亚共晶Al-Si合金凝固过程开展了大量的研究工作,考察了化学处理[5~7]、快速凝固[8,9]以及外场[10~12]对组织以及性能的影响。化学处理由于成本低、操作简单并能同时实现对α-Al的细化和共晶Si的变质而被广泛应用,而快速凝固和外场处理要求专业设备且操作复杂,工业应用相对较少。目前,工业上常常用Al-Ti-B中间合金细化α-Al晶粒,用Sr来改变共晶Si的形貌[13~15]。然而大量的生产实践表明,在传统α-Al晶粒细化剂和共晶Si变质剂处理下,亚共晶Al-Si合金的塑性仍难以满足高性能焊丝制备过程中的拉拔成型需求,合金在拉拔成焊丝时经常发生断丝。因此,进一步提高合金的塑性极为必要。

稀土素有“工业维生素”之称,常常被用于改善合金的凝固组织和服役性能[16,17]。近年来,利用相对廉价的稀土元素La来调控亚共晶Al-Si合金的凝固组织与性能引起了人们的广泛关注[18~20]。研究结果[19]表明,La是一种很好的α-Al晶粒细化剂和共晶Si变质剂。以往通常在未经细化处理、变质处理条件下研究La对亚共晶Al-Si合金凝固组织与性能的影响。但在实际工业生产中,通常会用Al-Ti-B中间合金和Sr对亚共晶Al-Si合金进行细化和变质处理。因此,以上研究结果并不能指导工业生产。

本工作研究了添加α-Al晶粒细化剂Al-Ti-B中间合金和共晶Si变质剂Sr条件下,微合金化元素La对亚共晶Al-Si合金凝固组织与性能的影响。以期为新型稀土铝合金的工业制备提供理论依据和参考。

1 实验方法

以Al-6Si (质量分数,%,下同)预合金,Al-9La、Al-10Sr以及Al-5Ti-B中间合金为实验原料,配置含不同质量分数稀土La的Al-6Si合金。实验过程如下:首先将Al-6Si预合金装入石墨粘土坩埚内,利用电阻炉加热熔化并升温至1023 K,用精炼剂对熔体除气除渣;加入0.02%Sr以及不同量的稀土La,基于前期的研究结果[19],稀土La的添加量(质量分数)分别为0、0.02%、0.06%和0.10%,保温10 min,保温过程进行搅拌,确保形成均一的合金熔体;随后降温至993 K,加入0.3%的Al-5Ti-B中间合金;最后将熔体浇铸到预热至423 K的铁模中,获得直径为20 mm、高为40 mm的圆柱试样。将获得的试样沿径向切开,对切面进行研磨、抛光,制备金相样品。利用2.5% (体积分数)的HBF4水溶液进行阳极覆膜处理,利用Axio Observer Z1光学显微镜(OM)、Quanta 450扫描电子显微镜(SEM)、EPMA-1610电子探针(EPMA)和Tecnai G2 20透射电镜(TEM)观察合金的显微组织。采用SISC IAS V8.0定量金相分析软件统计α-Al的平均晶粒尺寸和共晶Si的孪晶密度。在Ar气保护下利用ZCR-B差热分析仪(DTA)研究合金的凝固行为。过程如下:将约15 mg的试样以5 K/min的升温速率加热到993 K,保温10 min,随后以5 K/min的降温速率冷却至室温。根据GB/T228.1-2010标准加工拉伸试样。室温拉伸实验在Z150试验机上进行,拉伸速率为1 mm/min。

2 实验结果

2.1 凝固组织

图1和2分别为不同La添加量(CLa)下Al-6Si合金的OM像以及α-Al的平均晶粒尺寸(<Dα-Al>)。图1中不同颜色或者同一颜色的不同深浅均代表不同取向的晶粒。可见,在添加Al-Ti-B晶粒细化剂条件下,添加0.02%La还能进一步细化α-Al晶粒,随着La添加量的增加,细化效果进一步增强。当La的添加量超过0.06%后,α-Al的平均晶粒尺寸基本保持不变,表明添加0.06%La即能实现很好的晶粒细化效果。

图1

图1   不同La添加量下Al-6Si合金的OM像

Fig.1   OM images of Al-6Si alloys with La additions of 0 (a), 0.02% (b), 0.06% (c), and 0.10% (d)


图2

图2   Al-6Si合金平均晶粒尺寸随La添加量的变化

Fig.2   Average grain size (<Dα-Al>) of Al-6Si alloys with different additive amounts of La


图3为不含La和含有0.06%La的Al-6Si合金显微组织的SEM像。由图3a和c可见,共晶Si均以蠕虫状的形态分布于晶界。与不含La的合金(图3b)相比,含0.06%La合金中的共晶Si尺寸更小,形状更趋于球形(图3d)。表明在Sr变质条件下,微合金元素La可以进一步促进共晶Si的球化。图4给出了不含La和含有0.06%La合金中共晶Si的TEM明场像及其SAED花样。由图4a和b可见,共晶Si内部均含有大量的交错孪晶,经SAED标定(图4c和d),孪晶面均为{111}Si,孪晶方向为<112>Si,两孪晶面之间的夹角为70.5°,但孪晶密度明显不同。定量分析结果表明,含0.06%La合金内共晶Si的孪晶密度((2.1±0.3)×10-2 nm-1)高于不含La合金内共晶Si的孪晶密度((1.2±0.2)×10-2 nm-1)。

图3

图3   不含La和含0.06%La的Al-6Si合金的显微组织SEM像

Fig.3   Low (a, c) and high (b, d) magnified SEM images of Al-6Si alloys without La (a, b) and with addition of 0.06%La (c, d)


图4

图4   不含La和含0.06%La的Al-6Si合金中共晶Si的TEM明场像及其SAED花样

Fig.4   TEM bright-field images (a, b) of eutectic Si particle and their SAED patterns (c, d) in the zone axis of [011]Si in the Al-6Si alloys without La (a, c) and with addition of 0.06%La (b, d)


EPMA结果表明,当稀土La的添加量达到0.10%时,粗大的白色化合物在共晶Si附近形成,如图5背散射电子像(BEI)所示。其EPMA元素面分布图显示该化合物富La、Si元素,未见Sr、Ti等元素的富集。图6给出了含0.10%La的Al-6Si合金中稀土化合物的TEM明场像、EDS点分析结果和SAED花样。图5中的EPMA元素面分布和图6a中的EDS点分析结果表明,该化合物只含La、Al和Si 3种元素,且原子分数比接近1∶1∶1。结合SAED花样结果(图6b),可以确定该化合物为具有四方结构的LaAlSi相,与前期研究结果[19]完全一致。

图5

图5   含0.10%La的Al-6Si合金中稀土化合物和共晶Si的BEI像及EPMA元素面分布

Fig.5   Backscattered electron image (BEI) and EPMA mappings of the eutectic Si and La-rich phase particles in the Al-6Si alloy with 0.10%La addition


图6

图6   含0.10%La的Al-6Si合金中稀土化合物的TEM明场像、EDS结果及其SAED花样

Fig.6   TEM bright-field image and EDS result (a), and SAED pattern in the zone axis of [100] (b) for the LaAlSi phase in the Al-6Si alloy with 0.10%La addition


2.2 凝固过程

图7a为不同La添加量下Al-6Si合金的DTA冷却曲线。可见,当CLa<0.06%时,合金的冷却曲线在885和837 K附近出现2个放热峰A和B,分别对应于α-Al相的形成和Al-Si共晶反应过程。当CLa≥0.06%时,合金的冷却曲线出现了新的放热峰C,且C峰的强度随着CLa的增大而增大,该峰对应于LaAlSi相的形成。放热峰C与Al-Si共晶反应放热峰B重叠,表明LaAlSi化合物在共晶反应阶段形成。图7b给出了α-Al和共晶Si形核过冷度随稀土添加量的变化曲线。可见,当CLa从0增加到0.06%时,α-Al的形核过冷度(ΔTα-Al)逐渐降低;当CLa从0.06%增加到0.10%时,α-Al的形核过冷度基本保持不变。相对于不含La的合金,含0.06%La合金的α-Al形核过冷度降低了约3.2 K (图7b)。然而共晶Si的形核过冷度(ΔTSi)几乎不随CLa的变化而变化,表明微合金化元素La几乎不影响共晶Si的形核过程。

图7

图7   不同La添加量下Al-6Si合金的DTA冷却曲线及α-Al和共晶Si的形核过冷度随La添加量的变化

Fig.7   Differential thermal analysis (DTA) cooling curves for the Al-6Si alloys with different additive amounts of La (a), and the change of the nucleation undercooling for the α-Al (ΔTα-Al) and the eutectic Si (ΔTSi) with different additive amounts of La (b)


2.3 力学性能

图8给出了不同La添加量下Al-6Si合金的室温拉伸性能数据。可以看出,与不含La的合金相比,含La合金的延伸率(El)显著提高,当CLa≤0.06%时,合金的延伸率随CLa的增大而增大;当CLa继续增加到0.10%时,合金的延伸率反而降低。当La的加入量为0.06%时,合金的延伸率最高,相对于不含La的合金提升了约31%。合金的强度(屈服强度(YS)和抗拉强度(UTS))几乎维持不变,不随稀土La添加量的变化而变化。以上结果表明,在传统Al-Ti-B细化剂和Sr变质剂条件下,添加适量微合金元素La能进一步改善合金的塑性。

图8

图8   不同La添加量下合金的室温拉伸性能

Fig.8   Tensile properties of Al-6Si alloys with different additive amounts of La (YS—yield strength, UTS—ultimate tensile strength, El—elongation)


3 分析讨论

3.1 微合金化元素Laα-Al晶粒的影响

研究[21,22]表明,在铝合金熔体中加入Al-5Ti-1B中间合金时,中间合金中的TiB2会稳定存在并在冷却过程中作为α-Al晶核的异质形核核心;而TiAl3相在熔体中会快速溶解,以溶质[Ti]形式存在,增加凝固界面前沿成分过冷,阻碍α-Al晶粒的生长,从而获得细小的晶粒组织。当微量La加入合金熔体时,合金获得了更细小的晶粒组织(图1和2)。通常情况下,添加微合金化元素La可能从以下3个方面促进α-Al晶粒的细化:(1) 改变α-Al的异质形核条件;(2) 阻碍α-Al生长;(3) 作为表面活性剂。

组元之间形成化合物的倾向性可以用混合焓变表示。表1[23]给出了不同组元之间的混合焓变。La-Sr、La-Ti的混合焓变均为正,表明原子之间是排斥的,不易形成化合物。Ti-B的混合焓变低于La-B的混合焓变,说明Ti比La更易与B形成化合物。La-Si混合焓为负且最低,说明La更容易与Si形成化合物,这与实验结果完全吻合(图5和6),即当La的添加量达到0.10%后,La与Si、Al形成了LaAlSi化合物,而未见含Ti、Sr等元素化合物的形成。DTA结果表明LaAlSi化合物在Al-Si共晶反应阶段形成,因此它的形成不会改变α-Al的异质形核条件。计算表明,添加0.10%La对α-Al生长限制因子(Q)的影响仅为Q=CLamAl-La(kAl-La-1)0.2 K,其中mAl-LakAl-La分别为Al-La二元体系中的液相线斜率和平衡溶质分配系数[24],可以忽略。因此,微量La只能作为表面活性元素促进α-Al的形核与细化。

表1   不同组元之间的混合焓变[23] (kJ·mol-1)

Table 1  The enthalpy of mixing between various elements[23]

ElementAlSiLaSrTiB
Al------
Si-19-----
La-38-73----
Sr-18-4914---
Ti-30-662053--
B0-14-47-18-58-

新窗口打开| 下载CSV


在添加Al-5Ti-B中间合金细化处理条件下,在铝合金熔体凝固过程中,α-Al以TiB2为核心进行异质形核。由经典形核理论可知,决定异质形核的关键因素是形核基体与晶核的润湿角(θ),润湿角因子(f(θ))可以表示为[25]

f(θ)=2-3cosθ+cos3θ4=27(ΔTα-Al)2TNα-Al4TLα-Al3

式中,TLα-Al为合金的液相线温度,TNα-Alα-Al的形核温度。

添加微量La并不改变α-Al以TiB2为核心,进行异质形核的本质,但作为表面活性元素,La会改变TiB2α-Al晶核的θ。根据DTA分析给出的微量La对α-Al异质形核过冷度的影响,可由式(1)计算添加La后的θ。结果表明,添加0.06%La能使TiB2α-Al晶核的θ由原来的11.8°降低到8.3°。即微量La作为表面活性剂降低了TiB2α-Al晶核的润湿角,提高TiB2的异质形核能力,最终获得更细小的α-Al晶粒组织。

3.2 微合金化元素La对共晶Si的影响

共晶Si的形核过冷度几乎不随稀土添加量的变化而改变(图7b),表明微合金化元素La不会改变共晶Si的形核行为。因此,La主要通过改变Si相的长大行为来影响共晶Si的形貌。研究[26]表明,高密度交错孪晶的形成对共晶Si的形貌改变起着关键作用。Lu和Hellawell[27]基于钢球模型计算得出,诱发交错孪晶的首要条件为变质原子与Si原子的半径比(rX/rSiX为变质原子)在1.646附近,而rLa/rSi=1.59和rSr/rSi=1.84与上述比值接近。同时研究结果[6,19]证明,在Al-Si合金熔体中单独加入元素Sr或者La后,单独的变质原子或者原子团能嵌入共晶Si生长界面前沿,诱发高密度交错孪晶的形成,使共晶Si从片状结构转变为纤维状结构,提升合金的整体性能。然而添加过量的La或者Sr变质剂,在合金凝固过程中均会形成LaAlSi或者Al2Si2Sr金属间化合物,相应化合物的形成并不利于合金整体性能的提升[19,28]。在本工作中,La-Sr正的混合焓变(表1[23])使La和Sr不会发生化学反应形成含La-Sr的化合物。含La合金中共晶Si内更高的孪晶密度表明,在Sr变质共晶Si条件下,La仍能进一步诱发交错孪晶的形成(图4),改变Si的长大行为,促进共晶Si尺寸的细化和形貌的转变。因此,含La合金中获得了尺寸更细小、形状更趋于球形的共晶Si。

3.3 微合金化元素La对合金力学性能的影响

对铸态Al-Si合金而言,晶粒尺寸决定了合金的强度,共晶Si的形貌和尺寸以及金属间化合物的尺寸和体积分数决定了合金的塑性[29,30]。晶粒细化对屈服强度的贡献(Δσ)可以用Hall-Petch公式Δσ=kyΔd-0.5 (其中,ky为Hall-Petch系数,d为合金的晶粒尺寸)来计算。由于铝合金中较低的Hall-Petch系数(ky=68 MPa·μm0.5)[31],本工作中晶粒细化对合金强度的贡献较小(<1 MPa)。因此合金的强度几乎不随稀土添加量的变化而变化。含La的合金中共晶Si尺寸更小、形状更趋于球形,这将降低合金在受力过程中的应力集中,阻碍裂纹的萌生和扩展,从而大幅度提升合金的塑性。然而当La的添加量达到0.10%时,合金凝固时会形成金属间化合物LaAlSi相,硬脆的LaAlSi易作为裂纹源,降低合金的塑性。

4 结论

(1) 在传统Al-Ti-B晶粒细化剂和Sr变质剂条件下,添加适量的微合金化元素La即能作为表面活性剂降低TiB2α-Al的润湿角,提高TiB2的异质形核能力,促进α-Al的进一步细化;又能诱发Si形成交错孪晶,增大Si的孪晶密度,改变Si相的长大行为,促进共晶Si的进一步细化与球化,从而导致亚共晶Al-Si合金塑性的有效提高。

(2) 在亚共晶Al-Si合金中,La的最佳添加量约为0.06%。当La的添加量达到0.10%时,LaAlSi金属间化合物会在凝固过程的共晶反应阶段形成,导致合金塑性的降低。

参考文献

Zhao Z H, Xu Z, Wang G S, et al.

Microstructure and property of welding joint weld with micro-Alloying 4043 welding wire

[J]. Acta Metall. Sin., 2013, 49: 946

[本文引用: 1]

赵志浩, 徐 振, 王高松.

微合金化4043铝合金焊丝焊接接头的组织与性能

[J]. 金属学报, 2013, 49: 946

[本文引用: 1]

Hegde S, Prabhu K N.

Modification of eutectic silicon in Al-Si alloys

[J]. J. Mater. Sci., 2008, 43: 3009

[本文引用: 1]

Guan R G, Tie D.

A review on grain refinement of aluminum alloys: Progresses, challenges and prospects

[J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 409

[本文引用: 1]

Hosch T, Napolitano R E.

The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al-Si eutectic alloys

[J]. Mater. Sci. Eng., 2010, A528: 226

[本文引用: 1]

Chen Z N, Kang H J, Fan G H, et al.

Grain refinement of hypoeutectic Al-Si alloys with B

[J]. Acta Mater., 2016, 120: 168

[本文引用: 1]

Timpel M, Wanderka N, Schlesiger R, et al.

The role of strontium in modifying aluminium-silicon alloys

[J]. Acta Mater., 2012, 60: 3920

[本文引用: 1]

Bolzoni L, Xia M X, Babu N H.

Formation of equiaxed crystal structures in directionally solidified Al-Si alloys using Nb-based heterogeneous nuclei

[J]. Sci. Rep., 2016, 6: 39554

[本文引用: 1]

Triveño Rios C, Peres M M, Bolfarini C, et al.

Microstructure and mechanical properties of Al-Si-Mg ribbons

[J]. J. Alloys Compd., 2010, 495: 386

[本文引用: 1]

Dang B, Zhang X, Chen Y Z, et al.

Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

[J]. Sci. Rep., 2016, 6: 30874

[本文引用: 1]

Zhang Z T, Li J, Yue H Y, et al.

Microstructure evolution of A356 alloy under compound field

[J]. J. Alloys Compd., 2009, 484: 458

[本文引用: 1]

Wang J Y, Wang B J, Huang L F.

Structural evolution of Al-8%Si hypoeutectic alloy by ultrasonic processing

[J]. J. Mater. Sci. Technol., 2017, 33: 1235

Liu Z, Xu L N, Yu Z F, et al.

Research on the morphology and fractaldimension of primary phase in semisolid A356-La aluminum alloy by electro-magnetic stirring

[J]. Acta Metall. Sin., 2016, 52: 698

[本文引用: 1]

刘 政, 徐丽娜, 余昭福.

电磁场作用下半固态A356-La铝合金初生相形貌及分形维数的研究

[J]. 金属学报, 2016, 52: 698

[本文引用: 1]

Lu L, Dahle A K.

Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al-Si foundry alloys

[J]. Mater. Sci. Eng., 2006,

A

435-436: 288

[本文引用: 1]

Tan P, Yang Y, Sui Y D, et al.

The influence of Al-10Sr or/ and Al-5Ti-1B on microstructure and mechanical properties of Al-12Si-4Cu-2Ni-0.8 Mg alloys

[J]. J. Alloys Compd., 2019, 809: 151856

Timelli G, Caliari D, Rakhmonov J.

Influence of process parameters and Sr addition on the microstructure and casting defects of LPDC A356 alloy for engine blocks

[J]. J. Mater. Sci. Technol., 2016, 32: 515

[本文引用: 1]

Kairy S K, Rouxel B, Dumbre J, et al.

Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions

[J]. Corros. Sci., 2019, 158: 108095

[本文引用: 1]

Li J H, Wang X D, Ludwig T H, et al.

Modification of eutectic Si in Al-Si alloys with Eu addition

[J]. Acta Mater., 2015, 84: 153

[本文引用: 1]

Tsai Y C, Chou C Y, Lee S L, et al.

Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys

[J]. J. Alloys Compd., 2009, 487: 157

[本文引用: 1]

Zheng Q J, Zhang L L, Jiang H X, et al.

Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys

[J]. J. Mater. Sci. Technol., 2020, 47: 142

[本文引用: 5]

Pourbahari B, Emamy M.

Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy

[J]. Mater. Des., 2016, 94: 111

[本文引用: 1]

Quested T E, Dinsdale A T, Greer A L.

Thermodynamic modelling of growth-restriction effects in aluminium alloys

[J]. Acta Mater., 2005, 53: 1323

[本文引用: 1]

Quested T E, Greer A L.

Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification

[J]. Acta Mater., 2005, 53: 4643

[本文引用: 1]

Takeuchi A, Inoue A.

Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element

[J]. Mater. Trans, 2005, 46: 2817

[本文引用: 4]

Zhou S H, Napolitano R E.

Phase equilibria and thermodynamic limits for partitionless crystallization in the Al-La binary system

[J]. Acta Mater., 2006, 54: 831

[本文引用: 1]

Li S B, Du W B, Wang X D, et al.

Effect of Zr addition on the grain refinement mechanism of Mg-Gd-Er alloys

[J]. Acta Metall. Sin., 2018, 54: 911

[本文引用: 1]

李淑波, 杜文博, 王旭东.

Zr对Mg-Gd-Er合金晶粒细化机理的影响

[J]. 金属学报, 2018, 54: 911

[本文引用: 1]

Barrirero J, Pauly C, Engstler M, et al.

Eutectic modification by ternary compound cluster formation in Al-Si alloys

[J]. Sci. Rep., 2019, 9: 5506

[本文引用: 1]

Lu S Z, Hellawell A.

The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning

[J]. Metall. Trans., 1987, 18A: 1721

[本文引用: 1]

Sui Y D, Wang Q D, Wang G L, et al.

Effects of Sr content on the microstructure and mechanical properties of cast Al-12Si-4Cu-2Ni-0.8Mg alloys

[J]. J. Alloys Compd., 2015, 622: 572

[本文引用: 1]

Rao J S, Zhang J, Liu R X, et al.

Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition

[J]. Mater. Sci. Eng., 2018, A728: 72

[本文引用: 1]

Samuel E, Golbahar B, Samuel A M, et al.

Effect of grain refiner on the tensile and impact properties of Al-Si-Mg cast alloys

[J]. Mater. Des., 2014, 56: 468

[本文引用: 1]

Ma S M, Wang X M.

Mechanical properties and fracture of in-situ Al3Ti particulate reinforced A356 composites

[J]. Mater. Sci. Eng., 2019, A754: 46

[本文引用: 1]

/