铸态Z3CN20-09M双相不锈钢经1200 ℃热锻后,采用400 ℃热老化100、1000、3000 h处理。利用SEM和EBSD分析了铸态及锻态Z3CN20-09M双相不锈钢的显微组织和热老化1000、3000 h的冲击断口,采用纳米力学探针和冲击试验机测试了铸态及锻态Z3CN20-09M双相不锈钢热老化0、100、1000、3000 h微区力学性能和冲击性能。研究表明,经热加工后铁素体晶粒的取向呈现无序态,奥氏体晶粒由粗大的柱状晶经再结晶后变成细小的等轴晶。随热老化时间延长,铸态和锻态材料的冲击功都呈现下降趋势。热老化1000 h,铸态和锻态材料均呈现微孔聚集型断裂,断口出现大量韧窝花样。热老化3000 h,铸态和锻态材料均呈现韧窝/解理混合型断裂特征,铁素体发生脆性解理断裂, 奥氏体以撕裂或呈微孔聚集型断裂。铁素体区域内取向不同导致锻态材料冲击断口解理特征明显少于铸态材料。
Duplex stainless steels are widely used in nuclear industry for their excellent mechanical behavior, good weldability and superior ressistance to corrosion, the fracture toughness of which will be deteriorated with ageing time, as they are exposed to a certain temperature (204~538 ℃). In the present work, hot forging will be employed to induce the change of ferrite grain orientation and refinement of austenite grains; it is expected to improve the impact toughness after long-term thermal ageing. The microstructure and impact surface morphology of Z3CN20-09M duplex stainless steel were investigated by using SEM and EBSD. The micro-mechanical properties and impact properties of Z3CN20-09M duplex stainless steel at different thermal ageing time were tested by a nano-indenter and an instrumented impact tester. The results show that the crystal orientation of ferrite changes obviously and the austenite is changed from the original coarse columnar grains to the fine equiaxed grains after hot working. The im pact toughness of cast materials and forged materials decreases greatly with ageing time. The charpy impact energy of both aged and unaged forged-materials is higher than that of cast material. Cast material and forged material exhibit microvoid coalescence fracture in the early of thermal ageing; after 3000 h thermal ageing, the impact fracture features changes from ductile dimples to brittle cleavages in ferrites and tearings or dimples in austenites. However, cleavage features in forged material are significantly less than those in cast material due to the difference in ferrite crystal orientation.
前期研究[13]发现,Z3CN20-09M双相不锈钢组织凝固模式为铁素体奥氏体型,即铁素体先从液相中析出,随后从液相析出的奥氏体将铁素体包在其中。铁素体枝晶和奥氏体柱状晶晶粒粗大,奥氏体晶粒内的铁素体晶粒取向相同,导致材料经长期热老化后,Charpy冲击功迅速下降,冲击断口形貌中铁素体解理特征的比例远高于铁素体在材料中的体积分数[14]。基于前期的研究工作,本工作引入热锻工艺,通过热锻既可以将取向相同的铁素体晶粒变为无序晶粒取向,也可以把奥氏体粗大的柱状晶变为细小的等轴晶,使得两相组织得到优化,从而提高热老化双相不锈钢原始和热老化后的冲击性能,并结合断口形貌观察以及电子背散射衍射(EBSD)结果,分析铁素体晶粒取向对双相不锈钢冲击断裂行为的影响。
实验材料为 Z3CN20-09M 双相不锈钢,其化学成分(质量分数,%)为:C 0.021,S 0.002,Si 1.04,Mn 0.86,P 0.021,Cr 20.4,Ni 9.72,Mo 0.13,Cu 0.18,Co 0.09,N 0.04,Fe余量。原始工艺为静态铸造。热加工工艺为自由锻,每个应变方向变形量约为20%;变形后采用水淬冷却方式;随后进行固溶处理,固溶处理的温度为1050 ℃,保温时间为1 h,冷却方式为水冷;在400 ℃下对材料进行热老化处理,热老化时间分别为100、1000 和3000 h。
分别从原始铸态、热锻未固溶态、固溶态样品切取10 mm×10 mm×3 mm方块,研磨抛光后采用10%(体积分数) HClO4 酒精溶液进行电解抛光,电解抛光电压为30 V,电流保持在1.0 A左右,电解时间为15 s,随后使用SUPRA 55型扫描电镜(SEM)进行EBSD测试,采用Image-Pro Plus 6.0软件统计铸态材料和热锻+固溶1 h材料中铁素体的含量。分别从热老化0、100、1000和3000 h样品切取10 mm×10 mm×3 mm方块,经研磨抛光后经5 g FeCl3+100 mL HCl+100 mL酒精+100 mL H2O溶液侵蚀,采用MTS Nano Indenter XP纳米力学探针对试样中铁素体进行5次纳米压入实验,取平均值,压入深度为500 nm。采用MTS ZBS-450型冲击试验机进行Charpy冲击功测试,冲击试样尺寸为10 mm×10 mm×55 mm,利用SUPRA 55型SEM观察冲击断口形貌。
图1 Z3CN20-09M双相不锈钢铸态和热锻+固溶态的SEM-BSE像
Fig.1 SEM-BSE images of Z3CN20-09M duplex stainless steel before (a) and after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h (b)
图2 Z3CN20-09M双相不锈钢铸态及热锻态的EBSD像
Fig.2 EBSD images of Z3CN20-09M duplex stainless steel before (a) and after 20% hot forged reduction (b)
Z3CN20-09M双相不锈钢纳米硬度随热老化时间延长变化趋势如
图4 Z3CN20-09M双相不锈钢铁素体和奥氏体纳米硬度随热老化时间的变化
Fig.4 Change of nano-hardness with ageing time for austenite and ferrite in Z3CN20-09M duplex stainless steel before (a) and after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h (b)
图5 Z3CN20-09M双相不锈钢铁素体压入载荷-位移曲线
Fig.5 Load- displacement curves of ferrite in Z3CN20-09M duplex stainless steel before (a) and after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h (b) at different ageing time
图6 铸态和锻态Z3CN20-09M双相不锈钢Charpy冲击功随热老化时间的变化趋势
Fig.6 Change of Charpy-impact energy with ageing time for Z3CN20-09M duplex stainless steel before and after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h
铸态和锻态Z3CN20-09M 双相不锈钢 的 Charpy冲击功随热老化时间延长的变化趋势如
铁素体的含量会对热老化性能产生影响[21,22],此外,铁素体的形态和分布均会对热老化性能产生影响[23],铁素体在热老化脆化后,会成为裂纹快速扩展的通道,细长的铁素体会成为材料脆化的通道。如
采用小变形量对双相不锈钢Z3CN20-09M进行热锻时,由于铁素体含量较低,因此奥氏体承担了绝大部分变形,奥氏体晶粒也由原来粗大的柱状晶发生再结晶变成了细小的等轴晶,由于固溶时间较短,所以铁素体很难溶于奥氏体中。铸态材料在变形时,铁素体位于奥氏体晶内,在奥氏体晶粒变形的同时,铁素体晶粒也会跟着转动,导致铁素体的晶粒取向发生了变化。
图8 铸态Z3CN20-09M双相不锈钢中铁素体的EBSD像
Fig.8 EBSD image of ferrite in cast Z3CN20-09M duplex stainless steel
图9 热老化铸态Z3CN20-09M双相不锈钢冲击断裂过程示意图
Fig.9 Illustration of the impact fracture process of cast Z3CN20-09M duplex stainless steel after thermal ageing (Arrows mark ferrite cleavage along (001) plane, and white dotted lines mark tearing in austenite)
图10 Z3CN20-09M双相不锈钢中取向相同的铁素体在断裂时形成的解理小平面
Fig.10 Cleavage facets formed by fracturing of ferrites with the same orientation (as circled by yollow lines) in Z3CN20-09M duplex stainless steel
图11 锻态Z3CN20-09M双相不锈钢中铁素体的EBSD像
Fig.11 EBSD image of ferrite in Z3CN20-09M duplex stainless steel after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h
图12 热老化锻态Z3CN20-09M双相不锈钢冲击断裂过程示意图
Fig.12 Illustration of the impact fracture process of thermal aged Z3CN20-09M duplex stainless steel after 20% hot forged reduction+solution treatment at 1050 ℃ for 1 h (Arrows mark ferrite cleavage along (001) plane, and white dotted lines mark microvoid coalescence in austenite)
(1) Z3CN20-09M双相不锈钢经热锻固溶1 h处理后,铁素体的含量和形态并未发生明显变化,但铁素体晶粒取向发生了显著的变化;奥氏体发生了再结晶并形成了大量CSL晶界。
(2) 锻态材料和铸态材料铁素体的纳米硬度和最大压入载荷随热老化时间的延长而升高,铁素体变形能力下降,且锻态和铸态材料铁素体的纳米硬度变化趋势一致;而奥氏体纳米硬度变化不大。
(3) Z3CN20-09M双相不锈钢经热加工后,未热老化和热老化3000 h的冲击性能均高于铸态材料;热老化前期,铸态材料和锻态材料均呈现微孔聚集型断裂,热老化3000 h后,断裂机理为铁素体发生解理断裂,奥氏体撕裂或呈微孔聚集型断裂;主裂纹如果沿着某一晶粒取向的铁素体扩展,就会绕过相邻不同晶粒取向的铁素体,导致锻态材料断口解理特征少于铸态材料。
The authors have declared that no competing interests exist.
[1] |
[本文引用:]
|
[2] |
URL
[本文引用:]
|
[3] |
URL
[本文引用:]
|
[4] |
[本文引用:]
|
[5] |
[本文引用:]
|
[6] |
[本文引用:]
|
[7] |
[本文引用:]
|
[8] |
[本文引用:]
|
[9] |
[本文引用:]
|
[10] |
[本文引用:]
|
[11] |
[本文引用:]
|
[12] |
[本文引用:]
|
[13] |
[本文引用:]
|
[14] |
[本文引用:]
|
[15] |
[本文引用:]
|
[16] |
[本文引用:]
|
[17] |
[本文引用:]
|
[18] |
[本文引用:]
|
[19] |
[本文引用:]
|
[20] |
[本文引用:]
|
[21] |
[本文引用:]
|
[22] |
URL
[本文引用:]
|
[23] |
[本文引用:]
|
[24] |
[本文引用:]
|
[25] |
[本文引用:]
|
[26] |
[本文引用:]
|
[27] |
[本文引用:]
|