Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (10): 1104-1114    DOI:
Current Issue | Archive | Adv Search |
THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS
HU Wangyu; GUAN Hengrong; SUN Xiaofeng; LI Shizhuo; FUKUMOTO Masahiro;OKANE Isao(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Applied Physics; Hunan University; Changsha 410082)(Toyobashi University of Technology Toyobashi; Japan)Correspondent: SUN Xiaofeng; associate profssor Tel: (024)23843531-55608; Fax: (024)23891320
Cite this article: 

HU Wangyu; GUAN Hengrong; SUN Xiaofeng; LI Shizhuo; FUKUMOTO Masahiro;OKANE Isao(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Department of Applied Physics; Hunan University; Changsha 410082)(Toyobashi University of Technology Toyobashi; Japan)Correspondent: SUN Xiaofeng; associate profssor Tel: (024)23843531-55608; Fax: (024)23891320. THERMAL SHOCK BEHAVIOR OF ZrO_2/Ni GRADED THERMAL BARRIER COATINGS. Acta Metall Sin, 1998, 34(10): 1104-1114.

Download:  PDF(2335KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The failure behaviors of ZrO2/Ni graded thermal barrier coatings under the conditions of thermal shock with fiame jet and water quenching have been studied. The one-dimensi-onal analytic model of temperature and stress field under these conditions for the coatings hasbeen established. The thermal shock resistance of coatings increases with the increase of layersunder the condition of fiame jet and decreases with the increase of layers under the condition ofwater quenching, which can be reasonably explained with the present model. The thermal shockresistance depends on the thermal shock conditions, and is determined by the magnitude anddirection of the surface heat exchange coefficiellt. Therefore, it is necessary to choose suitablethermal shock condition to evaluate the ability to resist shock of coatings. For thermal barriercoatings which are applied to the turbine blade of aeroengine or under the matchable thermalshock conditions, gradient structure mny sigIilficantly improve their ability to resist thermal shock.
Key words:  ZrO_2/Ni      graded thermal barrier coating      thermal shock      temperature field      stress field     
Received:  18 October 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I10/1104

1 Leibert C H. Thin Solid Filme, 1979; 64: 329
2 乔海潮,丁传贤,无机材料学报,1991; 6: 103(Qiao H C, Ding C X. J Inoroanic Maten 1991; 6: 103)
3 Wason J W, Levina S R. Thin Solid Filme, 1984; 119: 185
4 McDonald G, Hendricks R C. Thin Solid Filme, 1980; 73: 491
5 福本昌宏.山崎隆典,根功.溶射,1993;30:20(Fukumoto M, Yamasaki T, Okane I. Thermal Spraying, 1993; 30(3): 20)
6 Musil J, Fiala J. Snd Codt Technol,1992; 52: 211
7 Taylor T A, Appleby D L, Weatherill A E, Griffiths J. Surf Coat Technol,1990; 43/44: 470
8 Hu W Y, Guan H R, Sun X F, Li S Z. Surf Coat Technol, in press
9 Hu W Y, Lu S, Li S Z, Sun X F, Guan H R, rubology Int, in press
10 Hu W Y, Guan H R, Sun X F, Li S Z. Mater Lett, 1997; 32: 59
11 Hu W Y, Guan H R, Sun X F, Li S Z. i Am Ceram Soc, in press
12 Araki N, Makino A, Mihara J. Int J Thermophgs, 1992; 13: 331
13 Araki N, Makino A, Ishiguro T, Mihara J. Int J Thermophys, 1992; 13: 515
14 Ishtwro T, Makino A, Araki N, Noda N. Int J Thermophys, 1993; 14: 101
15周本濂.见:师昌绪主编,材料科学进展,北京:科学出版社,1986:186(Zhou B L. In: Shi Changxu ed., Materich Science boss, Beijing: Science Press, 1986: 186)
16 Suresh S, Giannakopoulos A E, Olsson M. J Mech Phys Solids, 1994; 42: 979
17 Shen Y L, Suresh S. J Mater Res, 1995; 10: 1200
18 Wang H, Singh R N. Int Mater Rev, 1994; 39: 228
19 Kingery W D, Bowen H K, Uhlmann D R. Intnduction to Ceromics. 2nd ed., New York: John Wiley &Sons Inc, 1976: 816@
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[3] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[4] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[5] Cean GUO, Minghui CHEN, Yimin LIAO, Bei SU, Dongbai XIE, Shenglong ZHU, Fuhui WANG. Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock[J]. 金属学报, 2018, 54(12): 1825-1832.
[6] Min FENG, Minghui CHEN, Zhongdi YU, Zhenbo LV, Shenglong ZHU, Fuhui WANG. Comparative Study of Thermal Shock Behavior of the Arc Ion Plating NiCrAlY and the Enamel Based Composite Coatings[J]. 金属学报, 2017, 53(12): 1636-1644.
[7] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[8] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[9] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[10] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[11] KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2013, 49(1): 115-122.
[12] XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING[J]. 金属学报, 2012, 48(8): 965-970.
[13] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[14] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[15] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
No Suggested Reading articles found!