Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1473-1478    DOI:
论文 Current Issue | Archive | Adv Search |
MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES
JIA Ao; ZHANG Tianli; MENG Hao; JIANG Chengbao
School of Materials Science and Engineering; Beihang University; Beijing 100191
Cite this article: 

JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES. Acta Metall Sin, 2009, 45(12): 1473-1478.

Download:  PDF(1483KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rare–earth–iron alloy TbDyFe is an advanced magnetostrictive material to date because of its giant magnetostriction, high energy density, and rapid response at room temperature and low magnetic field. Due to the high sound velocity and eddy current losses of TbDyFe alloy under high frequency, its applications are limited. The bonded giant magnetostrictive materials are expected to exhibit high resistivity to reduce the eddy current loss. In the present study, the bonded giant magnetostrictive materials were prepared by mixing TbDyFe alloy particles with epoxy resin. The
electrical resistivity, impedance and eddy current losses of the bonded materials have been primarily analyzed. The optimized magnetostriction is observed to be 723.0×10−6 at magnetic field of 400 kA/m in the bonded material witparticle mass fraction of 90% and particle size of 74—150 μm. TbDyFe particle size and mass fraction show a significant influence on the magnetostriction of the bonded mateials. Compared to the advanced oriented TbDyFe allo, the electrical resistivity is 5 orders of magnitude greater, and the sound velocity is 1/3 lower under the applied magnetic field of 32.7 mT, ad the eddy current loss factor is reduced by 90% at 2×105 Hz, and by nearly 50% at 1×17 Hz.

Key words:  TbDyFe alloy      magnetostriction      eddy current loss     
Received:  26 May 2009     
ZTFLH: 

TG132.2+7

 
Fund: 

Supported by National Natural Science Foundation of China (No.60534020) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20080061026))

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1473

[1] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40: 373
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 373)
[2] Verhoeven J D, Gibson E D, McMaster O D, Ostenson J E. Metall Mater Trans, 1990; 21A: 2249
[3] Jiang C B, Zhao Y, Xu H B. Acta Metall Sin, 2004; 40: 378
(蒋成保, 赵岩, 徐惠彬. 金属学报, 2004; 40: 378)
[4] Sandlund L, Fahlander M, Cedell T, Clark A E, Restorff J B, Wun–Fogle M. J Appl Phys, 1994; 75: 5656
[5] Nersessian N, Or S W, Carman G P. J Magn Magn Mater, 2003; 263: 101
[6] Altin G, Ho K K, Henry C P, Carman G P. J Appl Phys, 2007; 101: 33537
[7] Kwon O Y, Kim H Y, Hong S H. J Appl Phys, 2006; 100:123905
[8] Duenas T A, Carman G P. J Appl Phys, 2000; 87: 4696
[9] McKnight G P, Carman G P. Smart Struct Mater, 2001; 4333: 178
[10] Or S W, Nersessian N, McKnight G P, Carman G P. J Appl Phys, 2003; 93: 8510
[11] Pasquale M, Lim S H. J Appl Phys, 1999; 85: 4633
[12] Jiang M H, Gu Z F, Cheng G. Acta Mater Comp Sin, 2008; 25: 73
(江民红, 顾正飞, 成钢. 复合材料学报, 2008; 25: 73)
[13] Hudson J, Busbridge S C, Piercy A R. Sens Actuators, 2000; 81A: 294
[14] Zhu X X, Zhang T L, Jiang C B. Acta Metall Sin, 2009; 45: 455
(朱小溪, 张天丽, 蒋成保. 金属学报, 2009; 45: 455)
[15] Bai X B, Jiang C B, Gong S K. Chin J Mater Res, 2006; 20: 607
(白夏冰, 蒋成保, 宫声凯. 材料研究学报, 2006; 20: 607)
[16] Bai X B, a T Y, Jiang C B. Acta Metall Sin, 2008; 44: 1231
(白夏冰, 马天宇, 蒋成保. 金属学报, 2008; 44: 1231)
[17] Zhou S Z, Zhao Q. Chin J Mater Res, 2001; 15: 135
(周寿增, 赵青. 材料研究学报, 2001; 15: 135)
[18] McKnight G P. PhD thesis, University of California, Los Angeles, 2002
[19] Mei W Y. Measurement of Dynamic Magnetic Property. Beijing: China Machine Press, 1985: 199
(梅文余. 动态磁性能测试. 北京: 机械工业出版社, 1985: 199)

[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[3] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[5] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[6] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[7] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[8] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[9] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[10] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[11] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[12] ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy[J]. 金属学报, 2008, 44(3): 361-364 .
[13] BAI Xia-Bing; MA Tian-Yu. MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS[J]. 金属学报, 2008, 44(10): 1231-1234 .
[14] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
[15] MA Tianyu; YAN Mi; WANG Qingwei. Homogeneity of Magnetostriction of Tb--Dy--Fe—Co<110> Oriented Alloy Rod[J]. 金属学报, 2007, 43(7): 688-692 .
No Suggested Reading articles found!