Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1441-1445    DOI:
论文 Current Issue | Archive | Adv Search |
CATALYSIS ON HETEROGENEOUS NUCLEATION OF SOLID COMPOUNDS IN LIQUID STEEL
PAN Ning1; SONG Bo1; ZHAI Qijie2
1.School of Metallurgical and Ecological Engineering; University of Science and Technology Beijing; Beijing 100083
2. School of Materials Science and Engineering; Shanghai University; Shanghai 200072
Cite this article: 

PAN Ning SONG Bo ZHAI Qijie. CATALYSIS ON HETEROGENEOUS NUCLEATION OF SOLID COMPOUNDS IN LIQUID STEEL. Acta Metall Sin, 2009, 45(12): 1441-1445.

Download:  PDF(474KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solid compounds added into liquid steel can be utilized as substrates for primary ferrite phase or primary austenite phase nucleation during solidification. The effect of solid compounds promoting heterogeneous nucleation can be interpreted as an electrostatic effect between substrates and nucleated phases, with heterogeneous nucleation being considered as caused by the free energy change due to the redistribution of free electrons at the interface of substrate and nucleated phase. In order to evaluate the electrostatic effect, Yu’s empirical electron theory was introduced. With concepts of lattice electron and atomic state hybridization brought forward by Yu, the bond length difference method was applied to calculate valence electron structures of substrates and nucleated phases. The electrostatic effect was quantified as a electron transfer rate at the interface of substrate and nucleated phase. Parameter Δρ was proposed to represent the electron transfer rate. In this study,23 compounds commonly found in liuid steel were selected as the substrates, along with δ–Fe and γ–Fas the nucleatd phases. The valence electron structures of sbstrates and nucleatephases were calculated on the basis of crystal structure data obtained by experimnts. Parameter Δρ between each substrate and δ–Fe/ γ–Fe was calculated from the valence eectron structures. The results show ha, as the parameter Δρ increases, the work of heterogeneous nucleation derived from experimental data decreases; the larger Δρ is, the more effective the substrate is for promoting nucleatio.

Key words:  electrostatic effect      empirical electron theory      heterogeneous nucleaton      liquid steel     
Received:  25 May 2009     
ZTFLH: 

TG111.4

 
Fund: 

Supported by National Natural Science Foundation of China (No.50734008)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1441

[1] Hu H Q. Solidification of Metals. Beijing: Metallurgical Industry Press, 1985: 84
(胡汉起. 金属凝固. 北京: 冶金工业出版社, 1985: 84)
[2] Tiller W, Takahashi T. Acta Metall, 1969; 17: 483
[3] Yu R H. Chin Sci Bull, 1978; 23: 217
(余瑞璜. 科学通报, 1978; 23: 217)
[4] Yu R H. Chin Sci Bull, 1981; 26: 206
(余瑞璜. 科学通报, 1981; 26: 206)
[5] Liang G F, Xu Z M, Qu D K, Song C J, Liu X Y, Li J G. J Shanghai Jiaotong Univ, 2005; 39: 1073
(梁高飞, 许振明, 瞿迪柯, 宋长江, 刘向阳, 李建国. 上海交通大学学报, 2005; 39: 1073)
[6] Liang G F, Song C J, Liu X Y, Xu Z M, Li J G. Rare Metal Mater Eng, 2005; 34: 1558
(梁高飞, 宋长江, 刘向阳, 许振明, 李建国. 稀有金属材料与工程, 2005; 34: 1558)
[7] Zhang R L. The Empirical Electron Theory of Solids and Molecules. Changchun: Jilin Science and Technology Press, 1993: 231
(张瑞林. 固体与分子经验电子理论. 长春: 吉林科学技术出版社, 1993: 231)
[8] Kohlhaas R, Dunner Ph, Schmitz–Pranghe N. Z Angew Phys, 1967; 23: 245
[9] Wyckoff R. Crystal Structures. New York: Interscience Publishers, 1963: 10
[10] Newnham R, de Haan Y. Z Kristallogr, 1962; 117: 235
[11] Barnighausen H, Schiller G. J Less–Common Met, 1985; 110: 385
[12] Kummerle E, Heger G. J Solid State Chem, 1999; 147: 485
[13] Aldebert P, Traverse J. Mater Res Bull, 1979; 14: 303
[14] Morosin B. Phys Rev, 1970B; 1: 236
[15] Storms E, Krikorian N. J Phys Chem, 1959; 63: 1747
[16] Brauer G, Esselborn R. Z Anorg Allg Chem, 1961; 309: 151
[17] Wright A, Leadbetter A. Philos Mag, 1975; 31: 1391
[18] Houska C. J Phys Chem Solids, 1965; 25: 359
[19] Taylor A, Doyle N. J Appl Crystallogr, 1971; 4: 103
[20] Rice C, Robinson W. Acta Crystallogr, 1977; 33B: 1342
[21] Abrahams S, Bernstein J. J Chem Phys, 1971; 55: 3206
[22] Storms E, McNeal R. J Phys Chem, 1962; 66: 1401
[23] Brauer G, Schnell W. J Less–Common Met, 1964; 6: 326
[24] Aldebert P, Traverse J. J Am Ceram Soc, 1985; 68: 34
[25] Huang C, Song B, Mao J H, Zhao P. Sci China, 2004; 34E: 737
(黄诚, 宋 波, 毛憬红, 赵沛. 中国科学, 2004; 34E: 737)
[26] Ershov G, Bychev V. Iz VUZ Chern Metall, 1975: 72
[27] Chernov B. Iz VUZ Chern Metall, 1983: 4
[28] Staronka A, Gotas W. Arch Eisenhuttenwes, 1979; 50: 237
[29] van Muu B, Fenzke H W, Neuhof G. Neue Hutte, 1984; 29: 128
[30] Bramfitt B. Metall Trans, 1970; 1: 1987
[31] Ohashi T, Fujii H, Nuri Y, Asano K. Trans ISIJ, 1977; 17:262
[32] Nakajima K, Hasegawa H, Khumkoa S, Mizoguchi S. Metall Mater Trans, 2003; 34B: 539
[33] Suzuki T, Inoue J, Koseki T. ISIJ International, 2007; 47:847

[1] . EFFECT OF FORCED FLOW ON THREE DIMENSIONAL DENDRITIC GROWTH OF Al-Cu ALLOYS[J]. 金属学报, 2012, 48(5): 615-620.
[2] ZHAO Peng LI Shuangming FU Hengzhi. THREE-DIMENSIONAL MICROSTRUCTURE RECONSTRUCTION AND THE EUTECTIC SPACING ADJUSTMENT DURING DIRECTIONAL SOLIDIFICATION OF Al-40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2012, 48(1): 33-40.
[3] ZHOU Shengyin HU Rui JIANG Li LI Jinshan KOU Hongchao CHANG Hui ZHOU Lian. DENDRITE GROWTH IN SOLIDIFICATION OF UNDERCOOLED Co80Pd20 ALLOY[J]. 金属学报, 2011, 47(4): 391-396.
[4] LUO Liangshun ZHANG Yumin SU Yanqing WANG Xin GUO Jingjie FU Hengzhi . CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result
[J]. 金属学报, 2011, 47(3): 275-283.
[5] LUO Liangshun FU Hengzhi ZHANG Yumin LI Xinzhong SU Yanqing GUO Jingjie. CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
II. Theoretical Analysis
[J]. 金属学报, 2011, 47(3): 284-290.
[6] ZHANG Linan CHEN Qi LIU Lin. DEFORMATION BEHAVIOR AND CONSTITUTIVE EQUATION FOR Zr55Cu30Al10Ni5 BULK METALLIC GLASS IN SUPERCOOLED LIQUID REGION[J]. 金属学报, 2009, 45(4): 450-454.
[7] YANG Chaorong SUN Dongke PAN Shiyan DAI Ting ZHU Mingfang. CA--LBM MODEL FOR THE SIMULATION OF DENDRITIC GROWTH UNDER NATURAL CONVECTION[J]. 金属学报, 2009, 45(1): 43-50.
[8] WANG Qiang MA Mingzhen ZHANG Xinyu LIU Riping. CRYSTAL GROWTH VELOCITY IN UNDERCOOLED Zr50Cu50 ALLOY MELT[J]. 金属学报, 2008, 44(12): 1415-1418.
[9] Yaohe Zhou. Effect of solute trapping on the growth process in undercooled eutectic melts[J]. 金属学报, 2008, 44(11): 1335-1339 .
No Suggested Reading articles found!