Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (3): 361-364     DOI:
Research Articles Current Issue | Archive | Adv Search |
Melt quenched Fe81Ga19 magnetostriction alloy
ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin
Cite this article: 

ZHANG Su; LIU Jinghua; JIANG Chengbao; XU Huibin. Melt quenched Fe81Ga19 magnetostriction alloy. Acta Metall Sin, 2008, 44(3): 361-364 .

Download:  PDF(668KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fe81Ga19 magnetostrictive alloy rods were prepared by quenching from melt into the GaIn cooling media. The optical microscopy results showed that fine columnar crystalline distributing in the transverse and longitudinal sections of Fe81Ga19 rod. The [110] texture along the rod was detected from X-ray pole figure. Combining thermal analysis (DSC、TG) and x-ray diffraction patterns (XRD), it could be determined that the alloy was mainly comprised of a disordered bcc A2 phase, which kept the same after heat treatment. A magnetic transition was monitored at about 690℃ for both the as-solidified and heat treated samples, consistent with the curie temperature of A2 phase. The saturation magnetostriction reached 66ppm without a pre-stress. The enhanced magnetostriction was obviously observed under a pre-stress. Magnetostriction rose with the increasing compressive stress in the experimental range from 10MPa to 50MPa. The saturation magnetostriction achieved up to 115ppm under a 50MPa compressive pre-stress.
Key words:  Fe-Ga alloy      melt quenched      magnetostriction      
Received:  31 July 2007     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I3/361

[1]Guruswamy S,Srisukhumbowornchai N,Clark A E, Restorff J B,Wun-Fogle M.Scr Mater,2000;43:239
[2]Clark A E,Wun-Fogle M,Restorff J B,Lograsso T A, Cullen J R.IEEE Trans Magn,2001;37:2678
[3]Clark A E,Restorff J B,Wun-Fogle M,Lograsso T A, Schlagel D L.IEEE Trans Magn,2000;36:3238
[4]Srisukhumbowornchai N,Guruswamy S.J Appl Phys, 2001;90:5680
[5]Turtelli R S,Bormio-Numes C,Sninnecker J P,Gr(?)ssinger R.Physics,2006;384B:265
[6]Fu H Z,Guo J J,Su Y Q,Liu L,Xu D M,Li J S.Chin J Nonferrous Met,2003;13:797 (傅恒志,郭景杰,苏彦庆,刘林,徐达鸣,李金山.中国有色金属学报,2003;13:797)
[7]Ikeda O,Kainuma R,Ohnuma I,Fukamichi K,Ishida K. J Alloys Compd,2002;347:198
[8]Kawamiya N,Adachi K,Nakamura Y.J Phys Soc Jpn, 1972;33:1318
[9]Lograsso T A,Ross A R,Schlagel D L,Clark A E,Wun- Fogle M.J Alloys Compd,2003;350:95
[10]Kellogg R A,Flatau A B,Clark A E,Wun-Fogle M,Lo- grasso T A.J Appl Phys,2002;91:7821r
[1] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[2] Quan FU,Yuhui SHA,Zhenghua HE,Fan LEI,Fang ZHANG,Liang ZUO. Recrystallization Texture and Magnetostriction in Binary Fe81Ga19 Sheets[J]. 金属学报, 2017, 53(1): 90-96.
[3] LIU Yin, LIU Tie, WANG Qiang, WANG Huimin, WANG Li, HE Jicheng. EFFECT OF HIGH MAGNETIC FIELD ON CRYSTAL ORIENTATION, MORPHOLOGY AND MAGNETOSTRICTION OF TbFe2 AND Tb0.27Dy0.73Fe1.95 ALLOYS DURING HEAT TREATMENT PROCESS[J]. 金属学报, 2013, 49(9): 1148-1152.
[4] YAO Zhanquan, ZHAO Zengqi, JIANG Liping,HAO Hongbo, WU Shuangxia,ZHANG Guangrui, YANG Jiandong. EFFECTS OF Ce ADDITION ON THE MICROSTRUCTURE AND MAGNETOSTRICTION OF Fe83Ga17 ALLOY[J]. 金属学报, 2013, 49(1): 87-91.
[5] LI Xiaocheng DING Yutian HU Yong. MICROSTRUCTURE AND MAGNETOSTRICTION OF THE Tb0.3Dy0.7Fe1.95-xTix (x=0, 0.03, 0.06, 0.09) ALLOYS[J]. 金属学报, 2012, 48(1): 11-15.
[6] CUI Yue JIANG Chengbao XU Huibin. INTRINSIC MAGNETOSTRICTION OF Tb-Dy-Fe-Co ALLOY[J]. 金属学报, 2011, 47(2): 214-218.
[7] CHEN Libiao ZHU Xiaoxi LI Chuan LIU Jinghua JIANG Chengbao XU Huibin. <001> ORIENTED SINGLE CRYSTAL GROWTH AND MAGNETOSTRICTION OF Fe81Ga19 ALLOYS[J]. 金属学报, 2011, 47(2): 169-172.
[8] ZHANG Changsheng MA Tianyu YAN Mi PEI Yongmao GAO Xu. MAGNETOMECHANICAL DAMPING CAPACITY OF <110> ORIENTED Tb0.36Dy0.64(Fe0.85Co0.15)2 ALLOY[J]. 金属学报, 2009, 45(6): 749-753.
[9] ZHU Xiaoxi ZHANG Tianli JIANG Chengbao. ELECTROMECHANICAL COUPLING COEFFICIENT (K33) OF Fe72.5Ga27.5 MAGNETOSTRICTIVE ALLOY[J]. 金属学报, 2009, 45(4): 455-459.
[10] JIA Ao ZHANG Tianli MENG Hao JIANG Chengbao. MAGNETOSTRICTION AND EDDY CURRENT LOSS OF BONDED GIANT MAGNETOSTRICTIVE PARTICLE COMPOSITES[J]. 金属学报, 2009, 45(12): 1473-1478.
[11] Gao Xue-xu. Texture and magnetostriction in rolled Fe-Ga based alloy[J]. 金属学报, 2008, 44(9): 1031-1034 .
[12] LIN Jian; Haiyan ZHAO; Zhipeng CAI; Yongping LEI. STUDY ON THE RELATIONSHIP BETWEEN MAGNETIC FIELD AND RESIDUAL STRESS IN STEEL MATERIALS[J]. 金属学报, 2008, 44(4): 451-456 .
[13] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
[14] BAI Xia-Bing; MA Tian-Yu. MAGNETOMECHANICAL COUPLING FACTOR (k33) OF Tb0.36Dy0.64(Fe0.85Co0.15)2 <110> ORIENTED CRYSTALS[J]. 金属学报, 2008, 44(10): 1231-1234 .
[15] GAO Fang; JIANG Chengbao; LIU Jinghua; XU Huibin. Effects of the Third Element Additions on Phase Constitution and Magnetostriction of Fe--Ga Alloys[J]. 金属学报, 2007, 43(7): 683-687 .
No Suggested Reading articles found!