Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 635-640     DOI:
Research Articles Current Issue | Archive | Adv Search |
MODE II DYNAMIC FRACTURE TOUGHNESS OF TWO HIGH STRENGTH STEELS UNDER HIGH LOADING RATE
XU Zejian; LI Yulong; LIU Yuanyong LUO Jingrun; CHEN Yuze
西北工业大学航空学院
Cite this article: 

XU Zejian; LI Yulong; LIU Yuanyong LUO Jingrun; CHEN Yuze. MODE II DYNAMIC FRACTURE TOUGHNESS OF TWO HIGH STRENGTH STEELS UNDER HIGH LOADING RATE. Acta Metall Sin, 2006, 42(6): 635-640 .

Download:  PDF(343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Mode II dynamic fracture toughnesses K IId for high strength steels, 40Cr and 30CrMnSiNi2A, subjected to impact loading were measured using an experiment-number combined method. The tests were performed on shear specimens with Hopkinson pressure bar and the time of crack initiation was determined by strain gauge. With 3-D transient finite element analysis, the time evolution of dynamic stress intensity factor under different loading rates was obtained and the dynamic fracture toughness was determined by fracture initiation time. The results show that within the loading rate range (2×10 6 -7×10 6 MPa m 1/2/s), almost all the specimens failed by adiabatic shear bands and the K IId values of the two steels increase with increasing loading rate. The K IId value of 30CrMnSiNi2A is larger than that of 40Cr at the same loading rate. The effect of ligament size on fracture toughness was also discussed.
Key words:  high strength steel      loading rate      shear loading      
Received:  29 September 2005     
ZTFLH:  O347.3  
  O346.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/635

[1] Rokach I V. Fatigue Pract Eng Mater Struct, 1998; 21: 1007
[2] Li Y L. Rare Met Mater Eng, 1993; 22(5): 12 (李玉龙.稀有金属材料与工程, 1993;22(5):12)
[3] Li Y L, Guo W G, Jia D X, Liu Y Y. Acta Mech Solid Sin, 1995; 8(Special Issue): 210
[4] Li Y L, Liu Y Y. J Comput Struct Mech Appl, 1995; 12(1): 110 (李玉龙,刘元镛.计算结构力学及应用, 1995;12(1):110)
[5] Guo W G, Li Y L, Liu Y Y. Theor Appl Pract Mech, 1997; 26: 29
[6] Kalthoff J F, Winkler S. In: Chen C Y, Kunze H D, Meyer L W, eds., Proc Int Conf on Impact Loading & Dynamic Behavior of Materials, Bremen: Deutsche Gesellschaft fur Metallkunde, 1988: 185
[7] Kalthoff J F, Andreas B. Int J Fract, 2004; 30: 957
[8] Dong X L, Wang L L, Wang W, Yu J L. Explosion Shock Waves, 1999; 19: 222 (董新龙,王礼力,王 悟,虞吉林.爆炸与冲击, 1999;19: 222)
[9] Dong X L, Wang L L, Yu J L. J Ningbo Univ (Nat Sci Eng Engl), 2003; 16: 429
[10] Ruiz C, Mines RAW. Int J Fract, 1985; 29: 101
[11] Rittel D, Levin R, Maigre H. Mech Res Commun, 1997; 24: 57
[12] Klepaczko J R. J Mech Phys Solids, 1998; 46: 2139
[13] Mercier S, Molinari A. J Mech Phys Solids, 1998; 46: 1463
[1] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[2] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[4] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[5] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[6] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[7] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[8] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[9] Qingdong ZHANG,Xiao LIN,Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process[J]. 金属学报, 2017, 53(4): 385-396.
[10] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[11] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[12] Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(6): 679-688.
[13] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[14] YANG Fuqiang, SONG Renbo, SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 897-904.
[15] TIAN Yaqiang, ZHANG Hongjun, CHEN Liansheng, SONG Jinying, XU Yong, ZHANG Shihong. EFFECT OF ALLOY ELEMENTS PARTITIONING BEHAVIOR ON RETAINED AUSTENITE AND MECHANICAL PROPERTY IN LOW CARBON HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(5): 531-539.
No Suggested Reading articles found!