Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (5): 449-453     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)
Cite this article: 

. Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1). Acta Metall Sin, 2006, 42(5): 449-453 .

Download:  PDF(1208KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Abstract. RP/M is an advance technology based on build-up and discrete idea, and Laser direct deposition by coaxially feeding the powders to laser melting pool is a RM technology in general use. During depositing metallic components the variation and control of temperature field have been priority research problem in the research works all along, and major research object for this problem is simulating real temperature field during the deposition by finite element method. Finite-element model to simulate the temperature field in depositing process of vertical thin wall samples is created, and Solid-liquid coupling thermal conduction problem and heat content within Solid-liquid dilution zone are treated by use of equivalent thermal conductivity and enthalpy potential method in the paper. The simulating results objectively exposure the characteristics on the temperature field during depositing the vertical thin wall samples of 316Lstainless steel. By means of analyzing the simulation results, it is obtained that mean cooling velocity of the melting pool is at 103℃/S order of magnitude in the temperature upward 700℃,and the cooling velocity merely is at 101℃/S order in the temperature upward 240℃. Fluctuating temperature of the substrate undergoes three stages: elevation, stable, descends, and the thermal conduction in the substrate has little influence on the cooling velocity of the melting pool at the descending period. The conformity of the simulating result data with the experimental findings in public literatures is very well.
Key words:  Laser direct deposition      Metallic Vertical thin wall samples      Temperature field      Finite Element Simulat     
Received:  16 September 2005     
ZTFLH:  TG142  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I5/449

[1] Hofmeister W H, Bayuzick R J, Robinson M B. Int J Thermophys, 2000; 10(1): 279
[2] Hofmeister W, Wert M, Smugeresky J, Philliber J, Griffith M, Ensz M. JOM, 1999; 51(7): 79
[3] Hoadley A F A, Rappaz M. Metall Trans, 1992; 23B: 631
[4] Jendrzejewski R, Kreja I, Sliwinsi G. Mater Sci Eng, 2004; A379: 313
[5] Hu D, Kovacevic R. Int J Mack Tools Manuf, 2003; 43: 51
[6] Toyserkani E, Khajepour A, Corbin S. Opt Laser Eng, 2004; 41: 849
[7] Xu B Q. Int J Heat Mass Trans, 2003; 46: 4963
[8] Brockmann R, Dickmann K. Opt Laser Technol, 2003; 35: 115
[9] Hofmeister W, Griffith M, Ensz M, Smugeresky J. JOM, 2001; 53(9): 30
[10] Shawn M K. Master Thesis, Virginia Polytechnic Institute and State University, 2002
[11] Xi M Z. PhD Thesis, University of Science and Technology Beijing, 2002 (席明哲.北京科技大学博士学位论文,2002)
[12] Hoadley A F, Rappaz M, Zimmermann M. Metall Trans, 1991; 22B: 101
[13] Cao Z N. PhD Thesis, Harbin Institute of Technology, 1993 (曹振宁.哈尔滨工业大学博士学位论文,1993)
[14] Wei Y H. Trans Chin Weld Inst, 1999; 21(3): 99 (魏延红.焊接学报,1999;21(3):99)
[15] Levine I N, translated by Li Z F, Zhang Y F, Chu D Y. Physical Chemistry (The last of two volumes). Beijing: Peking University Press, 1987: 35 (Levine I N 著,李芝芬,张玉芬,褚德萤译.物理化学(下册). 北京:北京大学出版社,1987:35)
[16] Griffith M L, Schlinger M E, Harwell L D, Oliver M S, Baldwin M D, Ensz M T, Essien M, Brooks J, Robino C V, Smugeresky J E, Hofmeister W H, Wert M T, Nelson D V. Mater Des, 1999; 20: 107
[17] Hu Y P, Chen C W, Mukherjee K. J Laser Appl, 2000; 12: 126
[18] Hofmeistor W, Wert M, Sumugeresky J, Philliber J A, Griffith M, Ensz M. http://www.tms.org/pubs/journals/ JOM/9907/Hofmeister/Hofmeister-9907.htmlm
[1] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[4] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[5] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[6] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[7] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[8] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[9] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[10] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[11] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
[12] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[13] FENG Rui, ZHANG Meihan, CHEN Nailu, ZUO Xunwei, RONG Yonghua. FINITE ELEMENT SIMULATION OF THE EFFECT OF STRESS RELAXATION ON STRAIN-INDUCED MARTENSITIC TRANSFORMATION[J]. 金属学报, 2014, 50(4): 498-506.
[14] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[15] LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION[J]. 金属学报, 2013, 49(6): 641-648.
No Suggested Reading articles found!