Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 599-605     DOI:
Research Articles Current Issue | Archive | Adv Search |
PHASE-FIELD RESEARCH OF MICROSTRUCTURE EVOLUTION FOR DIRECTIONALLY SOLIDIFIED PERITECTIC TRANSITION I.Extension of Trijunction
LI Xinzhong; SU Yanqing; GUO Jingjie; WU Shiping; FU Hengzhi
哈尔滨工业大学
Cite this article: 

LI Xinzhong; SU Yanqing; GUO Jingjie; WU Shiping; FU Hengzhi. PHASE-FIELD RESEARCH OF MICROSTRUCTURE EVOLUTION FOR DIRECTIONALLY SOLIDIFIED PERITECTIC TRANSITION I.Extension of Trijunction. Acta Metall Sin, 2006, 42(6): 599-605 .

Download:  PDF(285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A phase-field model was built by optimizing characteristic parameters in the convectional phase-field model for peritectic transition, which is suitable to simulate microstructure evolution for peritectic transition of specific alloys. The growth of peritectic phase along the primary phase surface was simulated using this model for directionally solidified Ti-Al alloy at a high value of G/vp. The simulating results show that the difference of extending character of trijunction will cause two typical microstructures of discrete band and island band. Furthermore, the width of computational domain, the nucleation undercooling of peritectic phase and initial composition affect the extension of trijunction of directionally solidified peritectic alloy directly, and also the final microstructure.
Key words:  peritectic alloy      directional solidification      phase-field model      
Received:  21 September 2005     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/599

[1] Hunziker O, Vandyoussefi M, Kurz W. Ada Mater, 1998; 46: 6325
[2] Nestler B. J Cryst Growth, 1999; 204: 224
[3] Nestler B, Wheeler A A. Physica, 2000; 138D: 114
[4] Nestler B, Wheeler A A, Ratke L, Stocker C. Physica, 2000; 141D: 133
[5] Nestler B, Wheeler A A. Phys Rev, 1998; 57E: 2602
[6] Nestler B, Wheeler A A. Gomput Phys Commun, 2002; 147: 230
[7] Lo T S, Karma A, Plapp M. Phys Rev, 2001; 63B: 031504
[8] Vaithyanathan V, Chen L Q. Scr Mater, 2000; 42: 967
[9] Fan D, Chen S P, Chen L Q, Voorhees P W. Ada Mater, 2002; 50: 1895
[10] Li D Y, Chen L Q. Acta Mater, 1999; 47: 247
[11] Su Y Q, Liu C, Li X Z, Guo J J, Li B S, Jia J, Fu H Z. Intermetallics, 2005; 13: 267
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[12] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[13] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[14] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
[15] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
No Suggested Reading articles found!