Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (3): 275-280     DOI:
Research Articles Current Issue | Archive | Adv Search |
Numerical Simulation of Macrosegregation During Electromagnetic Centrifugal Solidification
GUO Dayong; YANG Yuansheng; TONG Wenhui; HU Zhuangqi
Institute of Metal Research; The Chinese Academy of Sciences
Cite this article: 

GUO Dayong; YANG Yuansheng; TONG Wenhui; HU Zhuangqi. Numerical Simulation of Macrosegregation During Electromagnetic Centrifugal Solidification. Acta Metall Sin, 2004, 40(3): 275-280 .

Download:  PDF(13787KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A macrosegregation model, based on the continuum formulation, is developed to evaluate momentum, heat and mass transfers during electromagnetic centrifugal solidification. Using a non--inertial coordinate system, the model is applied to predict Al--5%Cu alloy solidification under electromagnetic centrifugal solidification. The results show that the effect of electromagnetic force on melt lowers the radial component velocity of melt flow. The change of melt flow decreases the inverse segregation at outer position of the solidifying alloy and the negative segregation at the mushy zone. Electromagnetic centrifugal solidification lessens marcogregation compared with conventional centrifugal casting. Good agreement is found between the simulation and experiment results, which shows the electromagnetic centrifugal solidification can be described well by this model.
Key words:  electromagnetic centrifugal solidification      macrosegregation      fluid flow           
Received:  17 July 2003     
ZTFLH:  TG244  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I3/275

[1] Chang S, Stefanescu D M. Metall Trans, 1996; 27:2708
[2] Bennon W D, Incropera F P. Int J Heat Mass Transfer, 1987; 30:2161
[3] Bennon W D, Incropera F P. Int J Heat Mass Transfer, 1987; 30:2171
[4] Neilson D G, Incropera F P, Bennon W D. Int J Itea(?) Mass Transfer, 1990; 33:367
[5] Neilson D G, Incropera F P. Int J Heat Mass Transfer, 1991, 34:1717
[6] Yang Y S, Zhang W Q, Liu Q M, Hu Z Q. Prog Fluia Flow Res: Turbul Appl MHD, 1998; 182:701
[7] Zhang W Q, Yang Y S, Liu Q M, Zhu Y F, Hu Z Q. Modelling Simul Mater Sci Eng, 1996; 4:421
[8] Yang Y S, Zhu Y F, Hu Z Q. Proceedings of the International Congress on Electromagnetic Processing of Mater(?)als, Paris: Conter Fromcais De L'electricite, 1997, 2 431
[9] Yang Y S, Liu Q M, Jiao Y N, Ge Y L, Hu Z Q, Gao Y Y, Jia G L, Zhang J S. ISIJ Int, 1995; 35:389
[10] DIao Q Z, Tsai H L. Metall Trans, 1993; 24:963
[11] Vives C , Perry C. Int J Heat Mass Transfer, 1987. 30 479"
[1] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[2] Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications[J]. 金属学报, 2018, 54(5): 669-681.
[3] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[4] Jun LI, Junge WANG, Fengli REN, Honghao GE, Qiaodan HU, Mingxu XIA, Jianguo LI. Experimental and Numerical Simulation Study on Layer Casting Method for Composition Homogeneityon Ingot Casting[J]. 金属学报, 2018, 54(1): 118-128.
[5] Guotian WANG, Hongsheng DING, Ruirun CHEN, Jingjie GUO, Hengzhi FU. Effect of Current Intensity on Microstructure of Ni3Al Intermetallics Prepared by Directional Solidification Electromagnetic Cold Crucible Technique[J]. 金属学报, 2017, 53(11): 1461-1468.
[6] LIU Zheng, LIU Xiaomei, ZHU Tao, CHEN Qingchun. EFFECTS OF ELECTROMAGNETIC STIRRING WITH LOW CURRENT FREQUENCY ON RE DISTRIBUTION IN SEMISOLID ALUMINUM ALLOY[J]. 金属学报, 2015, 51(3): 272-280.
[7] DOU Kun, QING Jiasheng, WANG Lei, ZHANG Xiaofeng, WANG Bao, LIU Qing, DONG Hongbiao. RESEARCH ON INTERNAL CRACK SUSCEPTIBILITY OF CONTINUOUS-CASTING BLOOM BASED ON MICRO-SEGREGATION MODEL[J]. 金属学报, 2014, 50(12): 1505-1512.
[8] WANG Hongyan LIN Xin WANG Lilin MA Liang YANG Donghui HUANG Weidong. COUPLING EFFECT ON RHEOLOGY AND MICROSTRUCTURE OF SEMI-SOLID SCN-5H2O MODEL ALLOY[J]. 金属学报, 2011, 47(9): 1123-1128.
[9] WU Mengwu XIONG Shoumei. EXPERIMENTAL AND MODELING STUDIES ON THE STRUCTURE FORMATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY CONSIDERING THE EXTERNALLY SOLIDIFIED CRYSTALS IN THE SHOT SLEEVE\par[J]. 金属学报, 2011, 47(5): 528-534.
[10] ZHAO Lining LIN Xin HUANG Weidong. FORMATION AND EVOLUTION OF THE NON-DENDRITIC MORPHOLOGY IN UNDERCOOLING MELT WITH LOWER SHEARING RATE[J]. 金属学报, 2011, 47(4): 403-409.
[11] CHEN Liqing SUI Fengli LIU Xianghua. GRAIN GROWTH MODEL OF INCONEL 718 ALLOY FORGED SLAB IN REHEATING PROCESS PRIOR TO ROUGH ROLLING[J]. 金属学报, 2009, 45(10): 1242-1248.
[12] TONG Leilei LIN Xin ZHAO Lining HUANG Weidong. MORPHOLOGICAL STABILITY OF GLOBULAR CRYSTAL DURING SEMI--SOLID PROCESSING[J]. 金属学报, 2009, 45(6): 737-743.
[13] LIU Zheng MAO Weimin ZHAO Zhenduo. SEMI–SOLID A356 ALLOY SLURRY PREPARED BY A NEW PROCESS[J]. 金属学报, 2009, 45(4): 507-512.
[14] HAN Zhiqiang ZHU Wei LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology[J]. 金属学报, 2009, 45(3): 356-362.
[15] ZHU Wei HAN Zhiqiang LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING II. Numerical Simulation and Experimental Validation[J]. 金属学报, 2009, 45(3): 363-368.
No Suggested Reading articles found!