Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (10): 1418-1428    DOI: 10.11900/0412.1961.2024.00140
Research paper Current Issue | Archive | Adv Search |
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
ZHAO Jinbin1,2, WANG Jiantao2,3, HE Dongchang2,3, LI Junlin1, SUN Yan2, CHEN Xing-Qiu2(), LIU Peitao2()
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao. Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors. Acta Metall Sin, 2024, 60(10): 1418-1428.

Download:  HTML  PDF(1961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The discovery of hydride superconductors with high critical transition temperature (Tc) under high pressures has received considerable interest in developing superconducting materials that can operate at room temperature and ambient pressure. Although first-principles methods can accurately predict the critical temperature of hydride superconductors, the computational demands are significant because of the expensive calculation of electron-phonon coupling. Hence, constructing an accurate and efficient model for predicting Tc is highly desirable. In this study, a simple and interpretable machine learning (ML) model was developed using the random forest algorithm, which enables the selection of important features based on their importance. Using four physics-based features, namely, the standard deviation of the number of valence electrons, mean covalent radii, range of the Mendeleev number of constituent elements, and hydrogen fraction of the total density of states at the Fermi energy, the optimal ML model achieves high accuracy, with a mean absolute error of 24.3 K and a root-mean-square error of 33.6 K. The ML model developed in this study shows great application potential for high-throughput screening, thereby expediting the discovery of high-Tc superconducting hydrides.

Key words:  hydride superconductor      superconducting transition temperature      machine learning      random forest      first-principles calculation     
Received:  08 May 2024     
ZTFLH:  TG132.26  
Fund: National Natural Science Foundation of China(52188101,52201030);National Key Research and Development Program of China(2021YFB3501503);Key Research Program of Chinese Academy of Sciences(ZDRW-CN-2021-2-5)
Corresponding Authors:  LIU Peitao, professor, Tel: (024)23971560, E-mail: ptliu@imr.ac.cn;
CHEN Xing-Qiu, professor, Tel: (024)23971560, E-mail: xingqiu.chen@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00140     OR     https://www.ams.org.cn/EN/Y2024/V60/I10/1418

Fig.1  Distribution of hydride superconductors
(a) critical temperature (Tc) vs pressure
(b) number of binary and ternary hydrides in different Tc distribution intervals
ParameterMeaning of parameterValue
n-estimatorsNumber of decision trees10-30
Max-depthMaximum depth of decision treesNone, 1, 2, 4
Min-samples-splitMinimum number of samples required to split internal nodes2, 4, 8
Min-samples-leafMinimum number of samples at leaf nodes1, 2, 4, 8
Table 1  Hyper-parameters used in the sklearn library for the random forest algorithm (For other parameters that are not explicitly specified, default values are used)
Fig.2  Model test errors as a function of number of features for one single training (a) and averaged model test errors of ten independent trainings as a function of training set ratio (b) (The shadow-filled areas show the standard deviation. MAE—mean absolute error, RMSE—root mean square error)
Fig.3  The most important 4 features by recursive selections (a) and Tc predicted by the most accurate machine learning model obtained vs the ground-truth values (b) ([Avg_dev(NValence)]—standard deviation of the number of valence electrons of constituent element, [Mean(CovalentRadius)]—mean covalent radius of constituent element, [Range(Mendeleev Number)]—range of the Mendeleev number of constituent element, HDOS Fraction—hydrogen fraction of the total density of states at the Fermi energy)
Fig.4  Correlation between Tc and four features of Avg_dev(NValence) (a), Mean(CovalentRadius) (b), Range(Mendeleev Number) (c), and HDOS Fraction (d)

Material

Pressure

GPa

HDOS

Range(Mendeleev Number)Mean(CovalentRadius)

Avg_dev

(NValence)

Tc (RF)

K

Tc (Belli)[59]

K

Tc (Expt.) K
Li2MgH162500.539147.00.10319.3298.3473.0[43]
CaHfH121900.288551.62.24324.9198.3363.0[60]
CaHfH183000.418545.51.62339.0332.0345.0[60]
CaZrH123000.318551.60.49308.2192.6343.0[60]
MgH125000.722439.50.14300.5522.4340.0[70]
YH102500.418045.60.33312.5259.6326.0[89]
MAE-----47.6125.3-
RMSE-----68.4140.3-
Table 2  Model predictions for the six hydride superconductors with the highest Tc in the dataset[43,59,60,70,89]
Fig.5  Crystal structures and electronic densities of states for the six hydride superconductors with the highest Tc in the dataset
(a) Li2MgH16 (250 GPa) (b) CaHfH12 (190 GPa) (c) CaHfH18 (300 GPa)
(d) CaZrH12 (300 GPa) (e) MgH12 (500 GPa) (f) YH10 (250 GPa)
1 De Nobel J, Lindenfeld P. The discovery of superconductivity [J]. Phys. Today, 1996, 49: 40
2 Boeri L, Hennig R, Hirschfeld P, et al. The 2021 room-temperature superconductivity roadmap [J]. J. Phys. Condens. Matter, 2022, 34: 183002
3 Kim C J. Superconductor Levitation: Concepts and Experiments [M]. Singapore: Springer, 2019: 1
4 Mangin P, Kahn R. Superconductivity: An introduction [M]. Cham: Springer, 2017: 1
5 Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfähigkeit [J]. Naturwissenschaften, 1933, 21: 787
6 Hirsch J E, Maple M B, Marsiglio F. Superconducting materials classes: Introduction and overview [J]. Physica, 2015, 514C: 1
7 Bardeen J, Cooper L N, Schrieffer J R. Microscopic theory of superconductivity [J]. Phys. Rev., 1957, 106: 162
8 Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Z. Phys., 1986, 64B: 189
9 Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides [J]. Nature, 2015, 518: 179
10 Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Phys. Rev. Lett., 1987, 58: 908
pmid: 10035069
11 Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature, 1993, 363: 56
12 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K [J]. J. Am. Chem. Soc., 2008, 130: 3296
doi: 10.1021/ja800073m pmid: 18293989
13 Paglione J, Greene R L. High-temperature superconductivity in iron-based materials [J]. Nat. Phys., 2010, 6: 645
14 Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29: 037402
15 Li D F, Lee K, Wang B Y, et al. Superconductivity in an infinite-layer nickelate [J]. Nature, 2019, 572: 624
16 Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621: 493
17 Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10 [J]. Chin. Phys. Lett., 2024, 41: 017401
18 Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure [DB/OL]. arXiv: 2311. 07423, 2023
19 Wang M. Discovery of high-Tc superconductivity in a nickelate [J]. Physics, 2023, 52: 663
王 猛. 液氮温区镍氧化物高温超导体的发现 [J]. 物理, 2023, 52: 663
20 Pickett W E. Colloquium: Room temperature superconductivity: The roles of theory and materials design [J]. Rev. Mod. Phys., 2023, 95: 021001
21 Hu J P. Searching for new unconventional high temperature superconductors [J]. Acta Phys. Sin., 2021, 70(1): 017101
胡江平. 探索非常规高温超导体 [J]. 物理学报, 2021, 70(1): 017101
22 Li J X. Spin fluctuations and uncoventional superconducting pairing [J]. Acta Phys. Sin., 2021, 70(1): 017408
李建新. 自旋涨落与非常规超导配对 [J]. 物理学报, 2021, 70(1): 017408
23 Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410: 63
24 Ashcroft N W. Metallic hydrogen: A high-temperature superconductor? [J]. Phys. Rev. Lett., 1968, 21: 1748
25 Ashcroft N W. Hydrogen dominant metallic alloys: High temperature superconductors? [J]. Phys. Rev. Lett., 2004, 92: 187002
26 Duan D F, Liu Y X, Tian F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Sci. Rep., 2014, 4: 6968
27 Gor'kov L P, Kresin V Z. Pressure and high-Tc superconductivity in sulfur hydrides [J]. Sci. Rep., 2016, 6: 25608
doi: 10.1038/srep25608 pmid: 27167334
28 Drozdov A P, Eremets M I, Troyan I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525: 73
29 Liu H Y, Naumov I I, Geballe Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Phys. Rev. B, 2018, 98: 100102
30 Somayazulu M, Ahart M, Mishra A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Phys. Rev. Lett., 2019, 122: 027001
31 Drozdov A P, Kong P P, Minkov V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569: 528
32 Eremets M I, Minkov V S, Drozdov A P, et al. High-temperature superconductivity in hydrides: Experimental evidence and details [J]. J. Supercond. Novel Magn., 2022, 35: 965
33 Zhang S B, Zhang M, Liu H Y. Superconductive hydrogen-rich compounds under high pressure [J]. Appl. Phys., 2021, 127A: 684
34 Troyan I A, Semenok D V, Kvashnin A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Adv. Mater., 2021, 33: 2006832
35 Snider E, Dasenbrock-Gammon N, McBride R, et al. RETRACTED: Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Phys. Rev. Lett., 2021, 126: 117003
36 Semenok D V, Kvashnin A G, Ivanova A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: A route to room-temperature superconductivity [DB/OL]. arXiv: 1902. 10206, 2019
37 Semenok D V, Kvashnin A G, Ivanova A G, et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties [J]. Mater. Today, 2020, 33: 36
38 Li B, Miao Z L, Ti L, et al. Predicted high-temperature superconductivity in cerium hydrides at high pressures [J]. J. Appl. Phys., 2019, 126: 235901
39 Chen W H, Semenok D V, Huang X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Phys. Rev. Lett., 2021, 127: 117001
40 Wang H, Tse J S, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 6463
doi: 10.1073/pnas.1118168109 pmid: 22492976
41 Li Z W, He X, Zhang C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nat. Commun., 2022, 13: 2863
doi: 10.1038/s41467-022-30454-w pmid: 35606357
42 Flores-Livas J A, Boeri L, Sanna A, et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials [J]. Phys. Rep., 2020, 856: 1
43 Sun Y, Lv J, Xie Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Phys. Rev. Lett., 2019, 123: 097001
44 Di Cataldo S, Von Der Linden W, Boeri L. Phase diagram and superconductivity of calcium borohyrides at extreme pressures [J]. Phys. Rev., 2020, 102B: 014516
45 Geng N S, Bi T G, Zurek E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. J. Phys. Chem., 2022, 126C: 7208
46 Grockowiak A D, Ahart M, Helm T, et al. Hot hydride superconductivity above 550 K [J]. Front. Electron. Mater., 2022, 2: 837651
47 Di Cataldo S, Boeri L. Metal borohydrides as ambient-pressure high-Tc superconductors [J]. Phys. Rev., 2023, 107B: L060501
48 Song P, Hou Z F, Baptista De Castro P, et al. High-pressure Mg-Sc-H phase diagram and its superconductivity from first-principles calculations [J]. J. Phys. Chem., 2022, 126C: 2747
49 Shutov G M, Semenok D V, Kruglov I A, et al. Ternary superconducting hydrides in the La-Mg-H system [J]. Mater. Today Phys., 2024, 40: 101300
50 Chen W H, Huang X L, Semenok D V, et al. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures [J]. Nat. Commun., 2023, 14: 2660
doi: 10.1038/s41467-023-38254-6 pmid: 37160883
51 Zhao W D, Huang X L, Zhang Z H, et al. Superconducting ternary hydrides: Progress and challenges [J]. Natl. Sci. Rev., 2024, 11: nwad307
52 Gao M, Yan X W, Lu Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Phys. Rev., 2021, 104B: L100504
53 Zhang Z H, Cui T, Hutcheon M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Phys. Rev. Lett., 2022, 128: 047001
54 Song Y G, Bi J K, Nakamoto Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Phys. Rev. Lett., 2023, 130: 266001
55 Zhao W D, Duan D F, Du M Y, et al. Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H [J]. Phys. Rev., 2022, 106B: 014521
56 Du M Y, Song H, Zhang Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309
57 Sanna A, Cerqueira T F T, Fang Y W, et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds [J]. npj Comput. Mater., 2024, 10: 44
58 Dolui K, Conway L J, Heil C, et al. Feasible route to high-temperature ambient-pressure hydride superconductivity [J]. Phys. Rev. Lett., 2024, 132: 166001
59 Belli F, Novoa T, Contreras-García J, et al. Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors [J]. Nat. Commun., 2021, 12: 5381
doi: 10.1038/s41467-021-25687-0 pmid: 34531389
60 Liu L L, Peng F, Song P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Phys. Rev., 2023, 107B: L020504
61 Marsiglio F. Eliashberg theory: A short review [J]. Ann. Phys., 2020, 417: 168102
62 Éliashberg G M. Interactions between electrons and lattice vibrations in a superconductor [J]. Sov. Phys. JETP, 1960, 11: 696
63 Dynes R C. McMillan's equation and the Tc of superconductors [J]. Solid State Commun., 1972, 10: 615
64 Allen P B, Dynes R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Phys. Rev., 1975, 12B: 905
65 McMillan W L. Transition temperature of strong-coupled superconductors [J]. Phys. Rev., 1968, 167: 331
66 Oliveira L N, Gross E K U, Kohn W. Density-functional theory for superconductors [J]. Phys. Rev. Lett., 1988, 60: 2430
pmid: 10038349
67 Marques M A L, Lüders M, Lathiotakis N N, et al. Ab initio theory of superconductivity. II. Application to elemental metals [J]. Phys. Rev., 2005, 72B: 024546
68 Lüders M, Marques M A L, Lathiotakis N N, et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals [J]. Phys. Rev., 2005, 72B: 024545
69 Choudhary K, Garrity K. Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning [J]. npj Comput. Mater., 2022, 8: 244
70 Shipley A M, Hutcheon M J, Needs R J, et al. High-throughput discovery of high-temperature conventional superconductors [J]. Phys. Rev., 2021, 104B: 054501
71 Saha S, Di Cataldo S, Giannessi F, et al. Mapping superconductivity in high-pressure hydrides: The Superhydra project [J]. Phys. Rev. Mater., 2023, 7: 054806
72 Sommer T, Willa R, Schmalian J, et al. 3DSC—A dataset of superconductors including crystal structures [J]. Sci. Data, 2023, 10: 816
doi: 10.1038/s41597-023-02721-y pmid: 37990027
73 Cerqueira T F T, Sanna A, Marques M A L. Sampling the materials space for conventional superconducting compounds [J]. Adv. Mater., 2024, 36: 2307085
74 Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature [J]. npj Comput. Mater., 2018, 4: 29
75 Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
76 MDR. MDR SuperCon Datasheet Ver.220808 [EB/OL]. (2022-16-12)[Date·Cite].
77 Hutcheon M J, Shipley A M, Needs R J. Predicting novel superconducting hydrides using machine learning approaches [J]. Phys. Rev., 2020, 101B: 144505
78 Liu Y, Huang H Y, Yuan J, et al. Upper limit of the transition temperature of superconducting materials [J]. Patterns, 2023, 4: 100841
79 Wines D, Choudhary K. Data-driven design of high pressure hydride superconductors using DFT and deep learning [J]. Mater. Futures, 2024, 3: 025602
80 Ward L, Dunn A, Faghaninia A, et al. Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
81 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
82 Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
83 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
84 Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033
85 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python [J]. J. Mach. Learn. Res., 2011, 12: 2825
86 Pettifor D G. A chemical scale for crystal-structure maps [J]. Solid State Commun., 1984, 51: 31
87 Pettifor D G. The structures of binary compounds. I. Phenomenological structure maps [J]. J. Phys., 1986, 19C: 285
88 Villars P, Cenzual K, Daams J, et al. Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB [J]. J. Alloys Compd., 2004, 367: 167
89 Liu H Y, Naumov I I, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 6990
[1] ZHOU Yanyu, LI Jiangxu, LIU Chen, LAI Junwen, GAO Qiang, MA Hui, SUN Yan, CHEN Xingqiu. First-Principles Study of Projected Berry Phase and Hydrogen Evolution Catalysis in Pt7Sb[J]. 金属学报, 2024, 60(6): 837-847.
[2] LIU Zhuangzhuang, DING Minglu, XIE Jianxin. Advancements in Digital Manufacturing for Metal 3D Printing[J]. 金属学报, 2024, 60(5): 569-584.
[3] LI Zhishang, ZHAO Long, ZONG Hongxiang, DING Xiangdong. Machine-Learning Force Fields for Metallic Materials: Phase Transformations and Deformations[J]. 金属学报, 2024, 60(10): 1388-1404.
[4] WANG Guanjie, LIU Shengxian, ZHOU Jian, SUN Zhimei. Explainable Machine Learning in the Research of Materials Science[J]. 金属学报, 2024, 60(10): 1345-1361.
[5] WEN Tongqi, LIU Huaiyi, GONG Xiaoguo, YE Beilin, LIU Siyu, LI Zhuoyuan. Deep Potentials for Materials Science[J]. 金属学报, 2024, 60(10): 1299-1311.
[6] CHEN Mingyi, HU Junwei, YU Yaochen, NIU Haiyang. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research[J]. 金属学报, 2024, 60(10): 1329-1344.
[7] LIU Shi, HUANG Jiawei, WU Jing. Application of Machine Learning Force Fields for Modeling Ferroelectric Materials[J]. 金属学报, 2024, 60(10): 1312-1328.
[8] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[9] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[10] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[11] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[12] HE Xingqun, FU Huadong, ZHANG Hongtao, FANG Jiheng, XIE Ming, XIE Jianxin. Machine Learning Aided Rapid Discovery of High Perfor-mance Silver Alloy Electrical Contact Materials[J]. 金属学报, 2022, 58(6): 816-826.
[13] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[15] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
No Suggested Reading articles found!