|
|
Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors |
ZHAO Jinbin1,2, WANG Jiantao2,3, HE Dongchang2,3, LI Junlin1, SUN Yan2, CHEN Xing-Qiu2( ), LIU Peitao2( ) |
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao. Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors. Acta Metall Sin, 2024, 60(10): 1418-1428.
|
Abstract The discovery of hydride superconductors with high critical transition temperature (Tc) under high pressures has received considerable interest in developing superconducting materials that can operate at room temperature and ambient pressure. Although first-principles methods can accurately predict the critical temperature of hydride superconductors, the computational demands are significant because of the expensive calculation of electron-phonon coupling. Hence, constructing an accurate and efficient model for predicting Tc is highly desirable. In this study, a simple and interpretable machine learning (ML) model was developed using the random forest algorithm, which enables the selection of important features based on their importance. Using four physics-based features, namely, the standard deviation of the number of valence electrons, mean covalent radii, range of the Mendeleev number of constituent elements, and hydrogen fraction of the total density of states at the Fermi energy, the optimal ML model achieves high accuracy, with a mean absolute error of 24.3 K and a root-mean-square error of 33.6 K. The ML model developed in this study shows great application potential for high-throughput screening, thereby expediting the discovery of high-Tc superconducting hydrides.
|
Received: 08 May 2024
|
|
Fund: National Natural Science Foundation of China(52188101,52201030);National Key Research and Development Program of China(2021YFB3501503);Key Research Program of Chinese Academy of Sciences(ZDRW-CN-2021-2-5) |
Corresponding Authors:
LIU Peitao, professor, Tel: (024)23971560, E-mail: ptliu@imr.ac.cn; CHEN Xing-Qiu, professor, Tel: (024)23971560, E-mail: xingqiu.chen@imr.ac.cn
|
1 |
De Nobel J, Lindenfeld P. The discovery of superconductivity [J]. Phys. Today, 1996, 49: 40
|
2 |
Boeri L, Hennig R, Hirschfeld P, et al. The 2021 room-temperature superconductivity roadmap [J]. J. Phys. Condens. Matter, 2022, 34: 183002
|
3 |
Kim C J. Superconductor Levitation: Concepts and Experiments [M]. Singapore: Springer, 2019: 1
|
4 |
Mangin P, Kahn R. Superconductivity: An introduction [M]. Cham: Springer, 2017: 1
|
5 |
Meissner W, Ochsenfeld R. Ein neuer effekt bei eintritt der supraleitfähigkeit [J]. Naturwissenschaften, 1933, 21: 787
|
6 |
Hirsch J E, Maple M B, Marsiglio F. Superconducting materials classes: Introduction and overview [J]. Physica, 2015, 514C: 1
|
7 |
Bardeen J, Cooper L N, Schrieffer J R. Microscopic theory of superconductivity [J]. Phys. Rev., 1957, 106: 162
|
8 |
Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Z. Phys., 1986, 64B: 189
|
9 |
Keimer B, Kivelson S A, Norman M R, et al. From quantum matter to high-temperature superconductivity in copper oxides [J]. Nature, 2015, 518: 179
|
10 |
Wu M K, Ashburn J R, Torng C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Phys. Rev. Lett., 1987, 58: 908
pmid: 10035069
|
11 |
Schilling A, Cantoni M, Guo J D, et al. Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system [J]. Nature, 1993, 363: 56
|
12 |
Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K [J]. J. Am. Chem. Soc., 2008, 130: 3296
doi: 10.1021/ja800073m
pmid: 18293989
|
13 |
Paglione J, Greene R L. High-temperature superconductivity in iron-based materials [J]. Nat. Phys., 2010, 6: 645
|
14 |
Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 [J]. Chin. Phys. Lett., 2012, 29: 037402
|
15 |
Li D F, Lee K, Wang B Y, et al. Superconductivity in an infinite-layer nickelate [J]. Nature, 2019, 572: 624
|
16 |
Sun H L, Huo M W, Hu X W, et al. Signatures of superconductivity near 80 K in a nickelate under high pressure [J]. Nature, 2023, 621: 493
|
17 |
Li Q, Zhang Y J, Xiang Z N, et al. Signature of superconductivity in pressurized La4Ni3O10 [J]. Chin. Phys. Lett., 2024, 41: 017401
|
18 |
Zhang M X, Pei C Y, Du X, et al. Superconductivity in trilayer nickelate La4Ni3O10 under pressure [DB/OL]. arXiv: 2311. 07423, 2023
|
19 |
Wang M. Discovery of high-Tc superconductivity in a nickelate [J]. Physics, 2023, 52: 663
|
|
王 猛. 液氮温区镍氧化物高温超导体的发现 [J]. 物理, 2023, 52: 663
|
20 |
Pickett W E. Colloquium: Room temperature superconductivity: The roles of theory and materials design [J]. Rev. Mod. Phys., 2023, 95: 021001
|
21 |
Hu J P. Searching for new unconventional high temperature superconductors [J]. Acta Phys. Sin., 2021, 70(1): 017101
|
|
胡江平. 探索非常规高温超导体 [J]. 物理学报, 2021, 70(1): 017101
|
22 |
Li J X. Spin fluctuations and uncoventional superconducting pairing [J]. Acta Phys. Sin., 2021, 70(1): 017408
|
|
李建新. 自旋涨落与非常规超导配对 [J]. 物理学报, 2021, 70(1): 017408
|
23 |
Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410: 63
|
24 |
Ashcroft N W. Metallic hydrogen: A high-temperature superconductor? [J]. Phys. Rev. Lett., 1968, 21: 1748
|
25 |
Ashcroft N W. Hydrogen dominant metallic alloys: High temperature superconductors? [J]. Phys. Rev. Lett., 2004, 92: 187002
|
26 |
Duan D F, Liu Y X, Tian F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Sci. Rep., 2014, 4: 6968
|
27 |
Gor'kov L P, Kresin V Z. Pressure and high-Tc superconductivity in sulfur hydrides [J]. Sci. Rep., 2016, 6: 25608
doi: 10.1038/srep25608
pmid: 27167334
|
28 |
Drozdov A P, Eremets M I, Troyan I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525: 73
|
29 |
Liu H Y, Naumov I I, Geballe Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Phys. Rev. B, 2018, 98: 100102
|
30 |
Somayazulu M, Ahart M, Mishra A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Phys. Rev. Lett., 2019, 122: 027001
|
31 |
Drozdov A P, Kong P P, Minkov V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569: 528
|
32 |
Eremets M I, Minkov V S, Drozdov A P, et al. High-temperature superconductivity in hydrides: Experimental evidence and details [J]. J. Supercond. Novel Magn., 2022, 35: 965
|
33 |
Zhang S B, Zhang M, Liu H Y. Superconductive hydrogen-rich compounds under high pressure [J]. Appl. Phys., 2021, 127A: 684
|
34 |
Troyan I A, Semenok D V, Kvashnin A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Adv. Mater., 2021, 33: 2006832
|
35 |
Snider E, Dasenbrock-Gammon N, McBride R, et al. RETRACTED: Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Phys. Rev. Lett., 2021, 126: 117003
|
36 |
Semenok D V, Kvashnin A G, Ivanova A G, et al. Synthesis of ThH4, ThH6, ThH9 and ThH10: A route to room-temperature superconductivity [DB/OL]. arXiv: 1902. 10206, 2019
|
37 |
Semenok D V, Kvashnin A G, Ivanova A G, et al. Superconductivity at 161 K in thorium hydride ThH10: Synthesis and properties [J]. Mater. Today, 2020, 33: 36
|
38 |
Li B, Miao Z L, Ti L, et al. Predicted high-temperature superconductivity in cerium hydrides at high pressures [J]. J. Appl. Phys., 2019, 126: 235901
|
39 |
Chen W H, Semenok D V, Huang X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Phys. Rev. Lett., 2021, 127: 117001
|
40 |
Wang H, Tse J S, Tanaka K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 6463
doi: 10.1073/pnas.1118168109
pmid: 22492976
|
41 |
Li Z W, He X, Zhang C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nat. Commun., 2022, 13: 2863
doi: 10.1038/s41467-022-30454-w
pmid: 35606357
|
42 |
Flores-Livas J A, Boeri L, Sanna A, et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials [J]. Phys. Rep., 2020, 856: 1
|
43 |
Sun Y, Lv J, Xie Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Phys. Rev. Lett., 2019, 123: 097001
|
44 |
Di Cataldo S, Von Der Linden W, Boeri L. Phase diagram and superconductivity of calcium borohyrides at extreme pressures [J]. Phys. Rev., 2020, 102B: 014516
|
45 |
Geng N S, Bi T G, Zurek E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. J. Phys. Chem., 2022, 126C: 7208
|
46 |
Grockowiak A D, Ahart M, Helm T, et al. Hot hydride superconductivity above 550 K [J]. Front. Electron. Mater., 2022, 2: 837651
|
47 |
Di Cataldo S, Boeri L. Metal borohydrides as ambient-pressure high-Tc superconductors [J]. Phys. Rev., 2023, 107B: L060501
|
48 |
Song P, Hou Z F, Baptista De Castro P, et al. High-pressure Mg-Sc-H phase diagram and its superconductivity from first-principles calculations [J]. J. Phys. Chem., 2022, 126C: 2747
|
49 |
Shutov G M, Semenok D V, Kruglov I A, et al. Ternary superconducting hydrides in the La-Mg-H system [J]. Mater. Today Phys., 2024, 40: 101300
|
50 |
Chen W H, Huang X L, Semenok D V, et al. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures [J]. Nat. Commun., 2023, 14: 2660
doi: 10.1038/s41467-023-38254-6
pmid: 37160883
|
51 |
Zhao W D, Huang X L, Zhang Z H, et al. Superconducting ternary hydrides: Progress and challenges [J]. Natl. Sci. Rev., 2024, 11: nwad307
|
52 |
Gao M, Yan X W, Lu Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Phys. Rev., 2021, 104B: L100504
|
53 |
Zhang Z H, Cui T, Hutcheon M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Phys. Rev. Lett., 2022, 128: 047001
|
54 |
Song Y G, Bi J K, Nakamoto Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Phys. Rev. Lett., 2023, 130: 266001
|
55 |
Zhao W D, Duan D F, Du M Y, et al. Pressure-induced high-Tc superconductivity in the ternary clathrate system Y-Ca-H [J]. Phys. Rev., 2022, 106B: 014521
|
56 |
Du M Y, Song H, Zhang Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309
|
57 |
Sanna A, Cerqueira T F T, Fang Y W, et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds [J]. npj Comput. Mater., 2024, 10: 44
|
58 |
Dolui K, Conway L J, Heil C, et al. Feasible route to high-temperature ambient-pressure hydride superconductivity [J]. Phys. Rev. Lett., 2024, 132: 166001
|
59 |
Belli F, Novoa T, Contreras-García J, et al. Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors [J]. Nat. Commun., 2021, 12: 5381
doi: 10.1038/s41467-021-25687-0
pmid: 34531389
|
60 |
Liu L L, Peng F, Song P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Phys. Rev., 2023, 107B: L020504
|
61 |
Marsiglio F. Eliashberg theory: A short review [J]. Ann. Phys., 2020, 417: 168102
|
62 |
Éliashberg G M. Interactions between electrons and lattice vibrations in a superconductor [J]. Sov. Phys. JETP, 1960, 11: 696
|
63 |
Dynes R C. McMillan's equation and the Tc of superconductors [J]. Solid State Commun., 1972, 10: 615
|
64 |
Allen P B, Dynes R C. Transition temperature of strong-coupled superconductors reanalyzed [J]. Phys. Rev., 1975, 12B: 905
|
65 |
McMillan W L. Transition temperature of strong-coupled superconductors [J]. Phys. Rev., 1968, 167: 331
|
66 |
Oliveira L N, Gross E K U, Kohn W. Density-functional theory for superconductors [J]. Phys. Rev. Lett., 1988, 60: 2430
pmid: 10038349
|
67 |
Marques M A L, Lüders M, Lathiotakis N N, et al. Ab initio theory of superconductivity. II. Application to elemental metals [J]. Phys. Rev., 2005, 72B: 024546
|
68 |
Lüders M, Marques M A L, Lathiotakis N N, et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals [J]. Phys. Rev., 2005, 72B: 024545
|
69 |
Choudhary K, Garrity K. Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning [J]. npj Comput. Mater., 2022, 8: 244
|
70 |
Shipley A M, Hutcheon M J, Needs R J, et al. High-throughput discovery of high-temperature conventional superconductors [J]. Phys. Rev., 2021, 104B: 054501
|
71 |
Saha S, Di Cataldo S, Giannessi F, et al. Mapping superconductivity in high-pressure hydrides: The Superhydra project [J]. Phys. Rev. Mater., 2023, 7: 054806
|
72 |
Sommer T, Willa R, Schmalian J, et al. 3DSC—A dataset of superconductors including crystal structures [J]. Sci. Data, 2023, 10: 816
doi: 10.1038/s41597-023-02721-y
pmid: 37990027
|
73 |
Cerqueira T F T, Sanna A, Marques M A L. Sampling the materials space for conventional superconducting compounds [J]. Adv. Mater., 2024, 36: 2307085
|
74 |
Stanev V, Oses C, Kusne A G, et al. Machine learning modeling of superconducting critical temperature [J]. npj Comput. Mater., 2018, 4: 29
|
75 |
Breiman L. Random forests [J]. Mach. Learn., 2001, 45: 5
|
76 |
MDR. MDR SuperCon Datasheet Ver.220808 [EB/OL]. (2022-16-12)[Date·Cite].
|
77 |
Hutcheon M J, Shipley A M, Needs R J. Predicting novel superconducting hydrides using machine learning approaches [J]. Phys. Rev., 2020, 101B: 144505
|
78 |
Liu Y, Huang H Y, Yuan J, et al. Upper limit of the transition temperature of superconducting materials [J]. Patterns, 2023, 4: 100841
|
79 |
Wines D, Choudhary K. Data-driven design of high pressure hydride superconductors using DFT and deep learning [J]. Mater. Futures, 2024, 3: 025602
|
80 |
Ward L, Dunn A, Faghaninia A, et al. Matminer: An open source toolkit for materials data mining [J]. Comput. Mater. Sci., 2018, 152: 60
|
81 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
82 |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals [J]. Phys. Rev., 1993, 47B: 558
|
83 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
84 |
Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code [J]. Comput. Phys. Commun., 2021, 267: 108033
|
85 |
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in python [J]. J. Mach. Learn. Res., 2011, 12: 2825
|
86 |
Pettifor D G. A chemical scale for crystal-structure maps [J]. Solid State Commun., 1984, 51: 31
|
87 |
Pettifor D G. The structures of binary compounds. I. Phenomenological structure maps [J]. J. Phys., 1986, 19C: 285
|
88 |
Villars P, Cenzual K, Daams J, et al. Data-driven atomic environment prediction for binaries using the Mendeleev number: Part 1. Composition AB [J]. J. Alloys Compd., 2004, 367: 167
|
89 |
Liu H Y, Naumov I I, Hoffmann R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 6990
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|