Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (11): 1584-1594    DOI: 10.11900/0412.1961.2023.00331
Research paper Current Issue | Archive | Adv Search |
Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy
GENG Ruwei1(), WANG Lin2, WEI Zhengying3(), MA Ninshu4
1 School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
2 School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
3 State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049, China
4 Joining and Welding Research Institute, Osaka University, Osaka 567-0047, Japan
Cite this article: 

GENG Ruwei, WANG Lin, WEI Zhengying, MA Ninshu. Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy. Acta Metall Sin, 2024, 60(11): 1584-1594.

Download:  HTML  PDF(3635KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloys are widely used in the automobile, rail transportation, and aerospace industries owing to their excellent properties such as low density, high thermal conductivity, and high specific strength. Metal additive manufacturing (MAM) enables the high-quality integrated forming of aluminum alloy components. Among the MAM techniques, droplet and arc additive manufacturing (DAAM) is a newly proposed method that offers advantages, such as high efficiency and low cost. In DAAM process, a droplet generation system is designed above the substrate fixed on a three-dimensional motion platform. Below the droplet generation system, an arc heat source with variable polarity is tilted. During the DAAM process, the metal droplets drop vertically and sequentially into the molten pool generated by the arc heat source to realize metallurgical bonding. Layer-by-layer deposition of aluminum alloy components is achieved by moving the substrate. This study focuses on the DAAM process for 2319 aluminum alloy. The temperature field distribution, microstructure evolution, and epitaxial growth characteristics were investigated. First, the temperature field distribution during the deposition process was calculated using the finite element method combined with element birth and death techniques. Based on the temperature field analysis, the solidification parameters at different positions of the molten pool were calculated. These parameters were then substituted into a phase field (PF) model to determine the growth and evolution of the microstructure at different positions in the molten pool. Columnar crystal structures were formed in the bottom and middle regions of the molten pool. From the bottom to the upper part of the molten pool, the temperature gradient decreased and the solidification speed increased. Therefore, columnar crystals to equiaxed transition occurred in the middle and upper regions. Additionally, misorientation angles were introduced in the PF model to investigate the epitaxial growth characteristics of the solidification process. Larger misorientation angles had a more obvious influence on dendrite morphology and were more likely to be eliminated during competitive growth. Finally, the metallographic analysis showed that from the bottom to the upper part of the deposition layer, the microstructure changed from columnar to equiaxed crystals, and the presence of columnar crystal epitaxial growth agreed well with the simulation results.

Key words:  additive manufacturing      droplet and arc deposition      microstructure evolution      epitaxial growth      aluminum alloy     
Received:  10 August 2023     
ZTFLH:  TG40  
Fund: National Natural Science Foundation of China(52205432);National Natural Science Foundation of China(52275376);China Postdoctoral Science Foundation(2022M723375);Natural Science Foundation of Jiangsu Province(BK20221118);Natural Science Foundation of Shandong Province(ZR2023QE232)
Corresponding Authors:  GENG Ruwei, Tel: 18292875966, E-mail: geng6294@cumt.edu.cn;
WEI Zhengying, professor, Tel: 13571946262, E-mail: weizhengying437@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00331     OR     https://www.ams.org.cn/EN/Y2024/V60/I11/1584

Fig.1  Schematic of droplet and arc additive manufacturing (DAAM) process (a) and experimental platform (b) (Vs—substrate moment velocity, GTA—tungsten inert gas)
Fig.2  Temperature (T)-dependent physical properties of 2319 aluminum alloy
Fig.3  Initial conditions of epitaxial growth phase field model (θ0misorientation angle)
Fig.4  Temperature field distributions of deposition layer under currents of 220 A (a), 240 A (b), and 260 A (c); and temperature change curves at the center point of the layer under different currents (d) (G—temperature gradient)
Fig.5  Temperature gradient and solidification velocity distribution in the molten pool (V—solidification speed; inset shows the temperature field, and two blue arrows represent the projection process of the selected points on the fusion line)
Fig.6  Microstructure growth processes at the bottom (a-c) and the middle part (d-f) of molten pool (c— concentration, cconcentration far away from the interface, c / c—relative concentration, t—time, Δt—time step. One grid size is 0.216 μm)
(a) t = 2500Δt (b) t = 8500Δt (c) t = 24500Δt
(d) t = 2500Δt (e) t = 8500Δt (f) t = 19500Δt
Fig.7  Columnar to equiaxed transition (CET) processes during solidification showing the microscopic microstructure growths (a-c) and corresponding temperature field distributions (d-f) at different time (ΔT—undercooling)
(a, d) t = 5100Δt (b, e) t = 5700Δt (c, f) t = 6700Δt
Fig.8  Relationship between micromorphology and solidification conditions of grains (For an alloy of a given composition, the morphology and size of the grains are mainly determined by G and V in the molten pool)
Fig.9  Growth processes of solidification microstructure at the misorientation angles of 20° (a-c), 30° (d-f), and 40° (g-i) (ΔZ is the grain height difference with different misorientation angles) (a, d, g) t = 2500Δt (b, e, h) t = 7500Δt (c, f, i) t = 12500Δt
Fig.10  Deposition layer (a) and cross-sectional morphology (b) obtained by droplet and arc additive manufacturing
Fig.11  Microscopic structures of the deposition layer at different positions
(a) bottom (zone A in Fig.10b)
(b) middle (zone B in Fig.10b)
(c) upper part (zone C in Fig.10b)
Fig.12  Epitaxial characteristics of dendrite growth
1 Wu D J, Liu D H, Zhang Z A, et al. Microstructure and mechanical properties of 2024 aluminum alloy prepared by wire arc additive manufacturing [J]. Acta Metall. Sin., 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
吴东江, 刘德华, 张子傲 等. 电弧增材制造2024铝合金的微观组织与力学性能 [J]. 金属学报, 2023, 59: 767
doi: 10.11900/0412.1961.2021.00314
2 Li Q, Wang F D, Wang G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics [J]. Aeron. Manuf. Technol., 2018, 61(3): 74
李 权, 王福德, 王国庆 等. 航空航天轻质金属材料电弧熔丝增材制造技术 [J]. 航空制造技术, 2018, 61(3): 74
3 Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Astronaut., 2014, 35: 2690
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
4 Gu D D, Zhang H M, Chen H Y, et al. Laser additive manufacturing of high-performance metallic aerospace components [J]. Chin. J. Lasers, 2020, 47: 0500002
顾冬冬, 张红梅, 陈洪宇 等. 航空航天高性能金属材料构件激光增材制造 [J]. 中国激光, 2020, 47: 0500002
5 Chen J W, Xiong F Y, Huang C Y, et al. Numerical simulation on metallic additive manufacturing [J]. Sci. Sin. Phys. Mech. Astron., 2020, 50(9): 100
陈嘉伟, 熊飞宇, 黄辰阳 等. 金属增材制造数值模拟 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(9): 100
6 Xiao W J, Xu Y X, Song L J. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing [J]. Chin. J. Theor. Appl. Mech., 2021, 53(12): 11
肖文甲, 许宇翔, 宋立军. 面向增材制造的熔池凝固组织演变的相场研究 [J]. 力学学报, 2021, 53(12):11
7 Francois M M, Sun A, King W E, et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2017, 21: 198
8 Derekar K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium [J]. Mater. Sci. Technol., 2018, 34: 895
9 Wang L, Wei Y H, Yu F Y, et al. Phase-field simulation of dendrite growth under forced flow conditions in an Al-Cu welding molten pool [J]. Cryst. Res. Technol., 2016, 51: 602
10 Yu F Y, Wei Y H, Ji Y Z, et al. Phase field modeling of solidification microstructure evolution during welding [J]. J. Mater. Process. Technol., 2018, 255: 285
11 Geng R W, Du J, Wei Z Y, et al. Multiscale modelling of microstructure, micro-segregation, and local mechanical properties of Al-Cu alloys in wire and arc additive manufacturing [J]. Addit. Manuf., 2020, 36: 101735
12 Wang L, Ma Y M, Xu J. Numerical simulation of arc-droplet-weld pool behaviors during the external magnetic field-assisted MIG welding-brazing of aluminum to steel [J] Int. J. Therm. Sci., 2023, 194: 108530.
13 Zheng M, Wei L, Chen J, et al. A novel method for the molten pool and porosity formation modelling in selective laser melting [J]. Int. J. Heat Mass Transfer, 2019, 140: 1091
14 Zhang W B, Chen W, Chen D L, et al. Multi-scale numerical simulation of molten pool evolution process for electron beam selective melting [J]. Chin. J. Nonferrous Met., 2023, 33: 1413
张文斌, 陈 玮, 陈道梁 等. 电子束选区熔化增材制造熔池演化多尺度模拟 [J]. 中国有色金属学报, 2023, 33: 1413
15 Bayat M, Dong W, Thorborg J, et al. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies [J]. Addit. Manuf., 2021, 47: 102278
16 Du J, Wu Y X, Jiang M B, et al. Molten pool dynamics and particle migration Behavior during TIG-assisted droplet deposition manufacturing of SiC particle-reinforced aluminum matrix composites [J]. J. Mech. Eng., 2023, 59(3): 318
doi: 10.3901/JME.2023.03.318
杜 军, 吴云肖, 蒋敏博 等. TIG电弧辅助熔滴沉积增材制造SiCp增强铝基复合材料中的熔池动力学与颗粒迁移行为 [J]. 机械工程学报, 2023, 59(3): 318
17 He P F, Wei Z Y, Du J, et al. Investigation of droplet + arc deposition additive manufacturing with WCP simultaneous reinforcement for aluminum alloy [J]. J. Mech. Eng., 2022, 58(5): 258
贺鹏飞, 魏正英, 杜 军 等. 铝合金熔滴复合电弧沉积同步WC颗粒强化增材制造工艺研究 [J]. 机械工程学报, 2022, 58(5): 258
doi: 10.3901/JME.2022.05.258
18 Michaleris P. Modeling metal deposition in heat transfer analyses of additive manufacturing processes [J]. Finite Elem. Anal. Des., 2014, 86: 51
19 Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources [J]. Metall. Trans., 1984, 15B: 299
20 Salerno G, Bennett C, Sun W, et al. On the interaction between welding residual stresses: A numerical and experimental investigation [J]. Int. J. Mech. Sci., 2018, 144: 654
21 Ramirez J C, Beckermann C, Karma A, et al. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion [J]. Phys. Rev., 2004, 69E: 051607
22 Echebarria B, Folch R, Karma A, et al. Quantitative phase-field model of alloy solidification [J]. Phys. Rev., 2004, 70E: 061604
23 Kang H, Song S J, Sul Y E, et al. Epitaxial-growth-induced junction welding of silver nanowire network electrodes [J]. ACS Nano, 2018, 12: 4894
doi: 10.1021/acsnano.8b01900 pmid: 29709175
24 Yu Y, Wang L, Zhou J, et al. Impact of fluid flow on the dendrite growth and the formation of new grains in additive [J]. Addit. Manuf., 2022, 55: 102832
25 Deschamps J, Georgelin M, Pocheau A. Growth directions of microstructures in directional solidification of crystalline materials [J]. Phys. Rev., 2008, 78E: 011605
26 Park J, Kang J H, Oh C S. Phase-field simulations and microstructural analysis of epitaxial growth during rapid solidification of additively manufactured AlSi10Mg alloy [J]. Mater. Des., 2020, 195: 108985
27 Wang J C, Guo C W, Li J J, et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall Sin, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
王锦程, 郭春文, 李俊杰 等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
doi: 10.11900/0412.1961.2017.00543
28 Dong H B, Lee P D. Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys [J]. Acta Mater., 2005, 53: 659
29 Li H G, Huang Y J, Jiang S S, et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy [J]. Mater. Des., 2021, 197: 109262
30 Lenart R, Eshraghi M. Modeling columnar to equiaxed transition in directional solidification of Inconel 718 alloy [J]. Comput. Mater. Sci., 2020, 172: 109374
31 Yang M, Wang L, Yan W T. Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening [J]. npj Comput. Mater., 2021, 7: 56
32 Gao Y M. Principle of Metal Solidification [M]. Xi'an: Xi'an Jiaotong University Press, 2010: 72
高义民. 金属凝固原理 [M]. 西安: 西安交通大学出版社, 2010: 72
[1] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[2] YU Yunhe, XIE Yong, CHEN Peng, DONG Haokai, HOU Jixin, XIA Zhixin. Interfacial Compatibility for Laser Melting Deposition of CoCrNiCu Medium-Entropy Alloy on 316L Austenitic Stainless Steel Surface[J]. 金属学报, 2024, 60(9): 1213-1228.
[3] ZHANG Xingxing, LUTZ Andreas, GAN Weimin, MAAWAD Emad, KRIELE Armin. Effect of Annealing Heat Treatment on the Macroscopic and Microscopic Deformation Behavior of Additively Manufactured AlSi10Mg Alloy[J]. 金属学报, 2024, 60(8): 1091-1099.
[4] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[5] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[6] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[7] LIU Zhuangzhuang, DING Minglu, XIE Jianxin. Advancements in Digital Manufacturing for Metal 3D Printing[J]. 金属学报, 2024, 60(5): 569-584.
[8] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[9] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[10] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[11] JIANG Huazhen, PENG Shuang, HU Qiyun, WANG Guangyi, CHEN Qisheng, LI Zhengyang, SUN Huilei, FANG Jiahuiyu. Corrosion and Cavitation Erosion Resistance of 316L Stainless Steels Produced by Laser Metal Deposition[J]. 金属学报, 2024, 60(11): 1512-1530.
[12] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!