|
|
Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment |
ZHANG Shuqian1,2, MA Yingjie2( ), WANG Qian2, QI Min1,2, HUANG Sensen2, LEI Jiafeng2, YANG Rui2 |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHANG Shuqian, MA Yingjie, WANG Qian, QI Min, HUANG Sensen, LEI Jiafeng, YANG Rui. Mechanical Properties and Electrical Conductivity of α + β Titanium Alloy Sheet Regulated by Heat Treatment. Acta Metall Sin, 2024, 60(12): 1622-1636.
|
Abstract Eddy current loss, which produces Joule heat and reduces transmission efficiency, is inevitable when the magnetic coupling is running. Magnetic couplings with high electrical resistivity alloys, such as titanium alloy, have been proven to be effective in suppressing the eddy currents. The Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was a α + β titanium alloy for marine engineering with high specific strength and electrical resistivity, which was used in magnetic couplings to suppress the eddy currents. In this study, the effect of annealing temperature on the microstructure, mechanical properties, and electrical conductivity of the Ti-6Al-3Mo-2V-1Cr-2Sn-2Zr alloy sheet was investigated. The results revealed that the band structure was arranged along the rolling direction (RD), and the as-rolled titanium alloy sheet showed a typical T-type texture with the c-axis of the α phase approximately parallel to the transverse direction (TD). A considerable increase in tensile strength and decrease in elongation after α + β region (850-920oC) annealing was thought to result from the strengthening of secondary α/β interfaces in the bimodal structure. Simultaneously, the α phase showed both T-type and R-type textures, which also resulted in higher yield strength along the TD of the sheet. Additionally, when the sheet suffered a β phase region annealing (950-1000oC), the elongation immediately decreased due to the coarseness and precipitation of the secondary α and grain boundary α phases, respectively. Meanwhile, the annealed sheet showed an R-type and a new B-type texture components with basal poles rotated 20°-30° away from the normal direction (ND) toward the RD under the influence of variant selection of secondary α phase. However, the yield strength along the TD was still higher than that in the RD, indicating that the effect of texture on yield strength anisotropy was reduced. Finally, the electrical resistivity analysis of the titanium alloy sheet indicated that the electrical resistivity along the RD of the sheet was higher when the band structure was formed and the c-axis of the α phase was concentrated in the TD. However, the disappearance of the band structure and the increase in the volume fraction of the R-type texture will reduce the anisotropy of electrical resistivity.
|
Received: 07 October 2022
|
|
Fund: National Key Research and Development Program of China(2021YFC2801801);National Natural Science Foundation of China(51871225) |
Corresponding Authors:
MA Yingjie, professor, Tel: 13840026329, E-mail: yjma@imr.ac.cn
|
1 |
Wang L, Jia Z Y, Liu X, et al. The key characteristics of the permanent magnet thruster for underwater vehicle [J]. J. Harbin Univ. Sci. Technol., 2020, 25(4): 33
|
|
王 雷, 贾振元, 刘 鑫 等. 水下机器人永磁推进器关键特性 [J]. 哈尔滨理工大学学报, 2020, 25(4): 33
|
2 |
Gong N N, Zhang B, Li J B. Calculation of eddy losses power of magnetic transmission isolation sleeve [J]. Mech. Eng. Autom., 2018, (6): 200
|
|
宫娜娜, 张 波, 李景彬. 磁力传动隔离套涡流损失功率计算 [J]. 机械工程与自动化, 2018, (6): 200
|
3 |
Kong F Y, Zhang Y, Shao F, et al. Eddy current loss of containment shell of high-speed magnetic driving pump [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(1): 61
|
|
孔繁余, 张 勇, 邵 飞 等. 高速磁力泵隔离套的磁涡流损失 [J]. 农业工程学报, 2012, 28(1): 61
|
4 |
Yumak N, Aslantaş K. A review on heat treatment efficiency in metastable β titanium alloys: The role of treatment process and parameters [J]. J. Mater. Res. Technol., 2020, 9: 15360
|
5 |
Yang R, Ma Y J, Lei J F, et al. Toughening high strength titanium alloys through fine tuning phase composition and refining microstructure [J]. Acta Metall. Sin., 2021, 57: 1455
doi: 10.11900/0412.1961.2021.00353
|
|
杨 锐, 马英杰, 雷家峰 等. 高强韧钛合金组成相成分和形态的精细调控 [J]. 金属学报, 2021, 57: 1455
|
6 |
Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
|
|
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
|
7 |
Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
|
8 |
Chen Z Q, Xu L J, Liang Z Q, et al. Effect of solution treatment and aging on microstructure, tensile properties and creep behavior of a hot-rolled β high strength titanium alloy with a composition of Ti-3.5Al-5Mo-6V-3Cr-2Sn-0.5Fe-0.1B-0.1C [J]. Mater. Sci. Eng., 2021, A823: 141728
|
9 |
Xu W J, Tan Y Q, Gong L H, et al. Effect of annealing temperature and cooling rate on microstructure and properties of TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2932
|
|
徐戊矫, 谭玉全, 龚利华 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 2932
|
10 |
Fan J K, Li J S, Kou H C, et al. Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333 [J]. Mater. Des., 2015, 83: 499
|
11 |
Wang K, Zhao Y Q, Jia W J, et al. Effect of heat treatment on microstructures and properties of Ti90 alloy [J]. Rare Met. Mater. Eng., 2021, 50: 552
|
|
王 可, 赵永庆, 贾蔚菊 等. 热处理对Ti90钛合金显微组织及性能的影响 [J]. 稀有金属材料与工程, 2021, 50: 552
|
12 |
Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
|
|
李文渊, 刘建荣, 陈志勇 等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
doi: 10.11901/1005.3093.2017.631
|
13 |
Cheng C, Feng Y, Chen Z Y, et al. Effect of annealing temperature on microstructure, texture and tensile properties of TA32 sheet [J]. Mater. Sci. Eng., 2021, A826: 141971
|
14 |
Obasi G C, Birosca S, Leo Prakash D G, et al. The influence of rolling temperature on texture evolution and variant selection during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 6013
|
15 |
Stanford N, Bate P S. Crystallographic variant selection in Ti-6Al-4V [J]. Acta Mater., 2004, 52: 5215
|
16 |
Zhao Z B, Wang Q J, Liu J R, et al. Effect of heat treatment on the crystallographic orientation evolution in a near-α titanium alloy Ti60 [J]. Acta Mater., 2017, 131: 305
|
17 |
Germain L, Gey N, Humbert M, et al. Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet [J]. Acta Mater., 2005, 53: 3535
|
18 |
Zheng G M, Li L, Mao X N, et al. Variant selection during titanium alloy BCC↔HCP phase transformation and its effect on crystal orientation [J]. Mater. Rep., 2019, 33: 2910
|
|
郑国明, 李 磊, 毛小南 等. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响 [J]. 材料导报, 2019, 33: 2910
|
19 |
Obasi G C, Birosca S, da Fonseca J Q, et al. Effect of β grain growth on variant selection and texture memory effect during α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 1048
|
20 |
Gey N, Humbert M. Characterization of the variant selection occurring during the α→β→α phase transformations of a cold rolled titanium sheet [J]. Acta Mater., 2002, 50: 277
|
21 |
Zhu Z S, Gu J L, Liu R Y, et al. Variant selection and its effect on phase transformation textures in cold rolled titanium sheet [J]. Mater. Sci. Eng., 2000, A280: 199
|
22 |
Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin: Springer-Verlag, 2007: 247
|
23 |
Hou J P, Wang Q, Zhang Z J, et al. Nano-scale precipitates: The key to high strength and high conductivity in Al alloy wire [J]. Mater. Des., 2017, 132: 148
|
24 |
Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall. Sin., 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
|
侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系: 晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
|
25 |
Li R, Zuo X W, Wang E G. Microstructure, resistivity, and hardness of aged Ag-7wt.%Cu alloy [J]. Acta Phys. Sin., 2017, 66: 027401
|
|
李 蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度 [J]. 物理学报, 2017, 66: 027401
|
26 |
Ying T, Zheng M Y, Li Z T, et al. Thermal conductivity of as-cast and as-extruded binary Mg-Al alloys [J]. J. Alloys Compd., 2014, 608: 19
|
27 |
Yuan J W, Zhang K, Li T, et al. Anisotropy of thermal conductivity and mechanical properties in Mg-5Zn-1Mn alloy [J]. Mater. Des., 2012, 40: 257
|
28 |
Leyens C, Peters M. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH Verlag GmbH, 2003: 24
|
29 |
Liu S L, Lu Y F, Huang X M, et al. Research situation on the effect of manufacturing process and heat treatment on the titanium alloy sheet texture [J]. Metall. Eng., 2015, 2: 144
|
|
刘松良, 卢影锋, 黄先明 等. 加工工艺及热处理对钛合金板材织构影响的研究现状 [J]. 冶金工程, 2015, 2: 144
|
30 |
Li W Y, Chen Z Y, Liu J R, et al. Rolling texture and its effect on tensile property of a near-α titanium alloy Ti60 plate [J]. J. Mater. Sci. Technol., 2019, 35: 790
|
31 |
Zhao Z B, Wang Q J, Liu J R, et al. Texture of Ti60 alloy precision bars and its effect on tensile properties [J]. Acta Metall. Sin., 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
|
|
赵子博, 王清江, 刘建荣 等. Ti60合金棒材中的织构及其对拉伸性能的影响 [J]. 金属学报, 2015, 51: 561
doi: 10.11900/0412.1961.2014.00451
|
32 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. 3rd Ed., Shanghai: Shanghai Jiaotong University Press, 2010: 197
|
|
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 第 3版, 上海: 上海交通大学出版社, 2010: 197
|
33 |
Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
|
34 |
Huang S S, Zhang J H, Ma Y J, et al. Influence of thermal treatment on element partitioning in α + β titanium alloy [J]. J. Alloys Compd., 2019, 791: 575
|
35 |
Huang S S, Ma Y J, Zhang S L, et al. Influence of alloying elements partitioning behaviors on the microstructure and mechanical properties in α + β titanium alloy [J]. Acta Metall. Sin., 2019, 55: 741
|
|
黄森森, 马英杰, 张仕林 等. α + β两相钛合金元素再分配行为及其对显微组织和力学性能的影响 [J]. 金属学报, 2019, 55: 741
doi: 10.11900/0412.1961.2018.00460
|
36 |
Germain L, Gey N, Humbert M, et al. Texture heterogeneities induced by subtransus processing of near α titanium alloys [J]. Acta Mater., 2008, 56: 4298
|
37 |
Gey N, Bocher P, Uta E, et al. Texture and microtexture variations in a near-α titanium forged disk of bimodal microstructure [J]. Acta Mater., 2012, 60: 2647
|
38 |
Zhou Y, Wang K, Xin R L, et al. Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy [J]. Mater. Lett., 2020, 271: 127766
|
39 |
Obasi G C, Moat R J, Leo Prakash D G, et al. In situ neutron diffraction study of texture evolution and variant selection during the α→β→α phase transformation in Ti-6Al-4V [J]. Acta Mater., 2012, 60: 7169
|
40 |
Bhattacharyya D, Viswanathan G B, Denkenberger R, et al. The role of crystallographic and geometrical relationships between α and β phases in an α/β titanium alloy [J]. Acta Mater., 2003, 51: 4679
|
41 |
Zhao Z B, Wang Q J, Hu Q M, et al. Effect of β (110) texture intensity on α-variant selection and microstructure morphology during β→α phase transformation in near α titanium alloy [J]. Acta Mater., 2017, 126: 372
|
42 |
Yang Y, Lu Y F, Ge P, et al. Variant selection of β→α phase transformation in titanium alloys [J]. Mater. Sci., 2014, 4: 197
|
43 |
Beladi H, Chao Q, Rohrer G S. Variant selection and intervariant crystallographic planes distribution in martensite in a Ti-6Al-4V alloy [J]. Acta Mater., 2014, 80: 478
|
44 |
Lei L, Zhao Y Q, Wu C, et al. Variant selection, coarsening behavior of α phase and associated tensile properties in an α + β titanium alloy [J]. J. Mater. Sci. Technol., 2022, 99: 101
doi: 10.1016/j.jmst.2021.04.069
|
45 |
Zhu Z S, Gu J L, Chen N P. Variant selection in α→β→α phase transformation of cold rolled titanium sheet [J]. Scr. Mater., 1996, 34: 1281
|
46 |
Li C L, Mi X J, Ye W J, et al. A study on the microstructures and tensile properties of new beta high strength titanium alloy [J]. J. Alloys Compd., 2013, 550: 23
|
47 |
Cheng C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate [J]. Acta Metall. Sin., 2020, 56: 193
|
|
程 超, 陈志勇, 秦绪山 等. TA32钛合金厚板的微观组织、织构与力学性能 [J]. 金属学报, 2020, 56: 193
|
48 |
Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
|
|
骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
|
49 |
Wu D M. Fundamentals of Solid State Physics [M]. Beijing: Higher Education Press, 2007: 84
|
|
吴代鸣. 固体物理基础 [M]. 北京: 高等教育出版社, 2007: 84
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|