Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (7): 890-900    DOI: 10.11900/0412.1961.2022.00351
Current Issue | Archive | Adv Search |
Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel
MENG Yujia1,2, XI Tong2, YANG Chunguang2(), ZHAO Jinlong2, ZHANG Xinrui2, YU Yingjie2, YANG Ke2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Advanced Materials Innovation Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

MENG Yujia, XI Tong, YANG Chunguang, ZHAO Jinlong, ZHANG Xinrui, YU Yingjie, YANG Ke. Effect of Gallium Addition on Mechanical and Antibacterial Properties of 304L Stainless Steel. Acta Metall Sin, 2024, 60(7): 890-900.

Download:  HTML  PDF(2800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a new antibacterial metal element, Ga is widely used in the medical field and always added to compounds in ionic form to form Ga complexes for medicinal use. However, related research on the mechanical properties, antibacterial properties, and antibacterial mechanism of Ga-bearing alloys is still very limited. In this work, the effect of Ga addition on the mechanical properties of 304L austenitic stainless steel (304L SS) after solution treatment was investigated via metallographic observations and tensile strength and hardness tests. Moreover, the antibacterial properties of Ga-bearing 304L stainless steel (304L-Ga SS) were tested using plate counting and the activity state of bacteria on the surface of the material was detected using SEM. Based on the known Ga ion sterilization principle, the antibacterial mechanism of 304L-Ga SS was preliminarily discussed using the reactive oxygen species (ROS) fluorescence reaction and ion dissolution results of the material in different solution tests. Results showed that the structure of 304L-Ga SS is still austenitic like that of 304L SS. The Ga addition increases the yield strength and elongation of the material but decreases its tensile strength and hardness. The change in strength and elongation is the result of the synergistic effect of the increase in stacking fault energy and the solid solution strengthening. The Ga addition also slightly increases the lattice constant of stainless steel due to the replacement solid solution effect. In the passive film of 304L-Ga SS, Ga exists in alloy form. Because of their similarity to Fe ions, Ga ions dissolved from Ga in the passive film are inhaled into bacteria cells and cause high expression of ROS in the bacteria, causing oxidative stress, and bactericidal effect. Contact sterilization is one of the main bactericidal mechanisms of 304L-Ga SS. Adequate contact between the bacteria and stainless steel improves the dissolution of Ga due to the proton (H+) depletion reaction in the bacteria. At the same time, the production of additional ROS during the proton consumption reaction further enhances the antibacterial effect.

Key words:  Ga-bearing stainless steel      microstructure      mechanical property      contact antibacterial     
Received:  20 July 2022     
ZTFLH:  TG142.71  
Fund: National Natural Science Foundation of China(52171242);Peak Climbing Project of Foshan Hospital of Traditional Chinese Medicine(202000206);Youth Innovation Promotion Association CAS(2018221)
Corresponding Authors:  YANG Chunguang, professor, Tel: (024)23971899, E-mail: cgyang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00351     OR     https://www.ams.org.cn/EN/Y2024/V60/I7/890

SteelCPSSiMnNiCrGaFe
304L SS0.010.010.020.480.407.8917.21-Bal.
304L-Ga SS0.020.020.020.700.968.0317.951.57Bal.
Table 1  Chemical compositions of the 304L and 304L-Ga stain-less steels (SS) samples
Fig.1  Size of tensile specimen (unit: mm)
Fig.2  SEM images of 304L SS (a) and 304L-Ga SS (b), and EDS distribution of Ga in 304L-Ga SS (c)
Fig.3  XRD spectra of 304L SS and 304L-Ga SS (a) and detailed scans for top diffraction peak (b)
Fig.4  Engineering stress-strain curves (a), and varia-tions of tensile and yield strengthes (b) and elongation and hardness (c) of 304L SS and 304L-Ga SS
SteelRmMPaRelMPaA%Hardness HV
304L SS670197 ± 4.258.6 ± 1.3158.45 ± 6.29
304L-Ga SS548.3 ± 17.6210 ± 8.775.8 ± 3.3153.14 ± 4.20
Table 2  Mechanical parameters of 304L and 304L-Ga stainless steels
Fig.5  Bacterial colonies of E. coli and S. mutans after co-culture with 304L SS and 304L-Ga SS (a) and the antibacterial rates of 304L-Ga SS against E. coli and S. mutans (b)
Fig.6  SEM images of E. coli (a, b) and S. mutans (c, d) after co-culture with 304L SS (a, c) and 304L-Ga SS (b, d) for 24 h
Fig.7  DCF fluorescence intensities (a) and MDA (b) of bacteria co-cultured with 304L SS and 304L-Ga SS at 37oC for 24 h (DCF—2',7'-dichlorofluorescein, MDA—malonadehyde, OD—optical density)
Fig.8  Ga3+ concentrations in different solutions after co-cultured with 304L-Ga SS at 37oC for 24 h (PBS—phosphate buffer solution)
Fig.9  Depth profiles of Ga concentrations on the surficial passivation film before (a) and after (b) soaking in the simulant saliva, and peak fitting curves of Ga3d spectrograms before soaking (a1-a3) and after soaking for different etch time (b1-b3)
Fig.10  Schematic of antibacterial mechanism of 304L-Ga SS
1 Oh K T, Choo S U, Kim K M, et al. A stainless steel bracket for orthodontic application [J]. Eur. J. Orthod., 2005, 27: 237
2 Winters G L, Nutt M J. Stainless Steels for Medical and Surgical Applications [M]. West Conshohocken: ASTM International, 2003: 13
3 Bombač D, Brojan M, Fajfar P, et al. Review of materials in medical applications [J]. RMZ-Mater. Geoenviron., 2007, 54: 471
4 Simionescu N, Benea L, Dumitrascu V M. The synergistic effect of proteins and reactive oxygen species on electrochemical behaviour of 316L stainless steel for biomedical applications [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 374: 012058
5 Chen Q Z, Thouas G A. Metallic implant biomaterials [J]. Mater. Sci. Eng., 2015, R87: 1
6 Wen M, Li W, Cao X M. Research on the mechanical properties for medical stainless steel [J]. Adv. Mater. Res., 2012, 383-390: 3976
7 Padilha A F, Plaut R L, Rios P R. Annealing of cold-worked austenitic stainless steels [J]. ISIJ Int., 2003, 43: 135
8 McGuire M F. Stainless Steels for Design Engineers [M]. New York: ASM International, 2008: 69
9 Singh N, Nanda T, Kumar B R, et al. In situ investigations of microstructural changes during tensile deformation of AISI 304L stainless steels [J]. Arch. Civ. Mech. Eng., 2019, 19: 672
10 Zhang E L, Zhao X T, Hu J L, et al. Antibacterial metals and alloys for potential biomedical implants [J]. Bioact. Mater., 2021, 6: 2569
doi: 10.1016/j.bioactmat.2021.01.030 pmid: 33615045
11 Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms [J]. Annu. Rev. Microbiol., 1995, 49: 711
pmid: 8561477
12 Sutherland I W. The biofilm matrix—An immobilized but dynamic microbial environment [J]. Trends Microbiol., 2001, 9: 222
pmid: 11336839
13 Hall-Stoodley L, Costerton J W, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases [J]. Nat. Rev. Microbiol., 2004, 2: 95
doi: 10.1038/nrmicro821 pmid: 15040259
14 An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces [J]. J. Biomed. Mater. Res., 1998, 43: 338
15 Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [J]. Nanomedicine, 2011, 7: 22
doi: 10.1016/j.nano.2010.10.005 pmid: 21050895
16 Ye L F, Chen H B, Lin Z L, et al. Research progress in antibacterial stainless steel [J]. Hot Work. Technol., 2014, 43(20): 10
叶丽芳, 陈惠波, 林照亮 等. 不锈钢抗菌技术研究进展 [J]. 热加工工艺, 2014, 43(20): 10
17 Xu M Y, Wang C, Li Y G. Research progress of antibacterial stainless steel [J]. Foundry Technol., 2016, 37(6): 1085
徐鸣悦, 王 丛, 李运刚. 抗菌不锈钢的研究进展 [J]. 铸造技术, 2016, 37(6): 1085
18 Kircheva N, Dudev T. Competition between abiogenic and biogenic metal cations in biological systems: Mechanisms of gallium's anticancer and antibacterial effect [J]. J. Inorg. Biochem., 2021, 214: 111309
19 Chitambar C R. Gallium complexes as anticancer drugs [A]. Metallo-Drugs: Development and Action of Anticancer Agents [M]. Berlin: De Gruyter, 2018: 281
20 Wazzan N, Soliman K A, Halim W S A. Theoretical study of gallium nitride nanocage as a carrier for 5-fluorouracil anticancer drug [J]. J. Mol. Model., 2019, 25: 265
doi: 10.1007/s00894-019-4147-8 pmid: 31444705
21 Yin H Y, Gao J J, Chen X M, et al. A gallium(III) complex that engages protein disulfide isomerase A3 (PDIA3) as an anticancer target [J]. Angew. Chem. Int. Ed., 2020, 59: 20147
22 Halevas E, Mavroidi B, Antonoglou O, et al. Structurally characterized gallium-chrysin complexes with anticancer potential [J]. Dalton Trans., 2020, 49: 2734
doi: 10.1039/c9dt04540f pmid: 32064490
23 Auger C, Lemire J, Appanna V, et al. Gallium in bacteria, metabolic and medical implications [A]. Encyclopedia of Metalloproteins [M]. New York: Springer, 2013: 800
24 Minandri F, Bonchi C, Frangipani E, et al. Promises and failures of gallium as an antibacterial agent [J]. Future Microbiol., 2014, 9: 379
doi: 10.2217/fmb.14.3 pmid: 24762310
25 Verron E, Bouler J M, Scimeca J C. Gallium as a potential candidate for treatment of osteoporosis [J]. Drug Discov. Today, 2012, 17: 1127
doi: 10.1016/j.drudis.2012.06.007 pmid: 22710367
26 Kaneko Y, Thoendel M, Olakanmi O, et al. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity [J]. J. Clin. Invest., 2007, 117: 877
27 Olakanmi O, Britigan B E, Schlesinger L S. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages [J]. Infect. Immun., 2000, 68: 5619
doi: 10.1128/IAI.68.10.5619-5627.2000 pmid: 10992462
28 Harrington J R, Martens R J, Cohen N D, et al. Antimicrobial activity of gallium against virulent Rhodococcus equiin vitro and in vivo [J]. J. Vet. Pharmacol. Ther., 2006, 29: 121
pmid: 16515666
29 Coleman M, Kuskie K, Liu M, et al. In vitro antimicrobial activity of gallium maltolate against virulent Rhodococcus equi [J]. Vet. Microbiol., 2010, 146: 175
30 Baldoni D, Steinhuber A, Zimmerli W, et al. In vitro activity of gallium maltolate against staphylococci in logarithmic, stationary, and biofilm growth phases: Comparison of conventional and calorimetric susceptibility testing methods [J]. Antimicrob. Agents. Chemother., 2010, 54: 157
doi: 10.1128/AAC.00700-09 pmid: 19805560
31 Chitambar C R. Gallium and its competing roles with iron in biological systems [J]. Biochim. Biophys. Acta., 2016, 1863: 2044
doi: 10.1016/j.bbamcr.2016.04.027 pmid: 27150508
32 Wu H X, Li R, Ge X. In vitro clearance effects of gallium nitrate on biofilms of clinically isolated Staphylococcus aureus [J]. Chin. J. Infect. Control, 2015, 14: 223
吴浩昕, 李 蓉, 葛 新. 硝酸镓对临床分离金黄色葡萄球菌生物膜的体外清除作用 [J]. 中国感染控制杂志, 2015, 14: 223
33 Rimondini L, Valle C D, Cochis A, et al. The biofilm formation onto implants and prosthetic materials may be contrasted using gallium (3+) [J]. Key Eng. Mater., 2013, 587: 315
34 Bernstein L R, Zhang L K. Gallium maltolate has in vitro antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19 [J]. Antivir. Chem. Chemother., 2020, 28: 2040206620983780
35 Xu G M, Zhang C X, Ning L, et al. Evaluation on the cytotoxicity of gallium alloy by MTT-assay [J]. Chin. J. Stomatol., 2001, 36: 189
pmid: 11812339
徐钢梅, 张彩霞, 宁 丽 等. MTT法评价镓合金的细胞毒性[J]. 中华口腔医学杂志, 2001, 36: 189
36 Goss C H, Kaneko Y, Khuu L, et al. Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections [J]. Sci. Transl. Med., 2018, 10: eaat7520
37 Li L, Chang H, Yong N, et al. Superior antibacterial activity of gallium based liquid metals due to Ga3+ induced intracellular ROS generation [J]. J. Mater. Chem., 2021, 9B: 85
38 Cochis A, Azzimonti B, Chiesa R, et al. Metallurgical gallium additions to titanium alloys demonstrate a strong time-increasing antibacterial activity without any cellular toxicity [J]. ACS Biomater. Sci. Eng., 2019, 5: 2815
39 Choi S R, Britigan B E, Narayanasamy P. Iron/heme metabolism-targeted gallium(III) nanoparticles are active against extracellular and intracellular Pseudomonas aeruginosa and Acinetobacter baumannii [J]. Antimicrob. Agents. Chemother., 2019, 63: e02643-18
40 Piatek M, Griffith D M, Kavanagh K. Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa [J]. J. Biol. Inorg. Chem., 2020, 25: 1153
41 Gao C D, Zeng Z H, Peng S P, et al. Magnetostrictive alloys: Promising materials for biomedical applications [J]. Bioact. Mater., 2022, 8: 177
doi: 10.1016/j.bioactmat.2021.06.025 pmid: 34541395
42 Eshed M, Lellouche J, Gedanken A, et al. A Zn-doped CuO nanocomposite shows enhanced antibiofilm and antibacterial activities against Streptococcus mutans compared to nanosized CuO [J]. Adv. Funct. Mater., 2014, 24: 1382
43 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiaotong University Press, 2010: 111
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 111
44 Cai T, Li K Q, Zhang Z J, et al. Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations [J]. J. Mater. Sci. Technol., 2020, 53: 61
doi: 10.1016/j.jmst.2020.04.027
45 Hacht B. Gallium(III) ion hydrolysis under physiological conditions [J]. Bull. Korean Chem. Soc., 2008, 29: 372
46 Orlov Y F, Maslov E I, Belkina E I. Solubilities of metal hydroxides [J]. Russ. J. Inorg. Chem., 2013, 58: 1306
47 Moeller T, King G L. The some physicochemical studies on Gallium(III) salt solutions [J]. J. Phys. Chem., 1950, 54: 999
48 Hijazi S, Visca P, Frangipani E. Gallium-protoporphyrin IX inhibits Pseudomonas aeruginosa growth by targeting cytochromes [J]. Front. Cell. Infect. Microbiol., 2017, 7: 12
49 Braud A, Hoegy F, Jezequel K, et al. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway [J]. Environ. Microbiol., 2009, 11: 1079
50 Todorov L, Kostova I, Lanthanum Traykova M. gallium and their impact on oxidative stress [J]. Curr. Med. Chem., 2019, 26: 4280
doi: 10.2174/0929867326666190104165311 pmid: 31438825
51 Cao H L, Liu X Y, Meng F H, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects [J]. Biomaterials, 2011, 32: 693
doi: 10.1016/j.biomaterials.2010.09.066 pmid: 20970183
52 Wang G M, Jin W H, Qasim A M, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species [J]. Biomaterials, 2017, 124: 25
doi: S0142-9612(17)30042-X pmid: 28182874
[1] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[2] CHEN Cheng, YANG Guangyu, JIN Menghui, WANG Qiang, TANG Xin, CHENG Huimin, JIE Wanqi. Effect of the Mold Positive and Negative Rotation on the Microstructure and Room-Temperature Mechanical Properties of K4169 Superalloy[J]. 金属学报, 2024, 60(7): 926-936.
[3] LIU Jinlai, SUN Jingxia, MENG Jie, LI Jinguo. Microstructural Stability and Stress Rupture Properties of a Third-Generation Ni Base Single Crystal Supalloy[J]. 金属学报, 2024, 60(6): 770-776.
[4] XU Renjie, TU Xin, HU Bin, LUO Haiwen. Microstructure and Mechanical Properties of Cu-V Dual Alloyed 3Mn Steel[J]. 金属学报, 2024, 60(6): 817-825.
[5] ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments[J]. 金属学报, 2024, 60(6): 713-730.
[6] WANG Feng, BAI Shengwei, WANG Zhi, DU Xudong, ZHOU Le, MAO Pingli, WEI Ziqi, LI Jinwei. Research Progress on Hot Tearing Behavior of Mg-Zn Series Alloys[J]. 金属学报, 2024, 60(6): 743-759.
[7] XIE Liwen, ZHANG Lilong, LIU Yanyan, ZHANG Mingyang, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication and Mechanical Properties of Bioinspired Mg-Based Composites Reinforced by Stainless Steel Fibers[J]. 金属学报, 2024, 60(6): 760-769.
[8] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[9] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[10] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[11] LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements[J]. 金属学报, 2024, 60(5): 585-604.
[12] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[13] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[14] WANG Jianqiang, LIU Weifeng, LIU Sheng, XU Bin, SUN Mingyue, LI Dianzhong. Effect of Aging Treatment at 700oC on Microstructure and Mechanical Properties of 9Cr ODS Steel[J]. 金属学报, 2024, 60(5): 616-626.
[15] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
No Suggested Reading articles found!