Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation
CHEN Wei1,2, CHEN Hongcan1,2, WANG Chenchong3, XU Wei3, LUO Qun1,2(), LI Qian1,2, CHOU Kuochih1,2
1.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2.Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 3.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article:
CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation. Acta Metall Sin, 2022, 58(2): 175-183.
Ultrahigh-strength steels have been widely used in critical engineering structures in military and civilian applications owing to the combination of ultrahigh strength and excellent toughness. The martensitic transformation start temperature (Ms) is an important parameter for designing alloys; it describes the thermodynamic stability and transformation behavior of austenite, affecting the strength and toughness of the alloy. To explore the influence of dilatational strain energy during martensitic transformation on Ms and calculate Ms in the Fe-C-Ni system, the dilatational curves of Fe-C-Ni alloys are measured using a dilatometer. Three tangents method is used to calculate Ms and austenitic transformation start temperature. The influence of composition on microstructure and lattice parameters after martensitic transformation was analyzed using OM and XRD. The dilatational strain energy model in the nonchemical driving force of martensitic transformation is modified considering the interaction between C and Ni components. The Ms of Fe-C-Ni system was calculated using a thermodynamic model in which the sum of martensitic transformation chemical driving force (the difference of Gibbs free energy between fcc and bcc phases) and nonchemical driving force (shearing strain energy of austenite, dilatational strain energy of austenite, dislocation stored energy of martensite, and interfacial energy of austenite and martensite) is zero. These results show that increasing C and Ni contents promote lattice expansion of the bcc phase after transformation whereas increasing Ni content reduces the martensite lath. The average proportion of dilatational strain energy of austenite in nonchemical driving force is approximately 41.3% in Fe-C-Ni alloys with atomic fractions of C < 1.0% and Ni < 20%. The prediction error of Ms in the Fe-C-Ni system is 4.1% using the modified model.
Fund: National Natural Science Foundation of China(U1808208);Independent Research and Development Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China(SKLASS2020-Z01);Science and Technology Commission of Shanghai Municipality(19DZ2270200)
About author: LUO Qun, associate professor, Tel: (021)66136577, E-mail: qunluo@shu.edu.cn
Fig.1 Dilatation curves of Fe-C-Ni alloys with different atomic fractions of C (Ms—martensitic transformation start temperature, As—austenitic transformation start temperature)
Fig.2 OM images of Fe-C-Ni alloys with different atomic fractions of C and Ni
Fig.3 XRD spectra of Fe-C-Ni alloys (a) and calculated lattice constants of bcc phase in Fe-C-Ni alloys (b)
Fig.4 Fitting line of linear dilatational ratio (ΔL / L of martensitic transformation vs the product of atomic fraction of C and Ni (xCxNi) by Eq.(17)
Fig.5 Comparison between 0.5(Ms + As)[36-40] with the predicted T0 (this work and Refs.[41,42]) in Fe-Ni system (T0—temperature of chemical driving force is equal to 0, TC—Curie temperature) (a) and calculated Ms in Fe-C-Ni system (b)
Fig.6 Calculated and experimental (this work and Refs.[11,43-45]) Ms in Fe-C-Ni alloys with different Ni contents (a) and comparison of experimental and calculated (this work and Refs.[11,22]) Ms by three models(experimental data from: Fe-C[11,50-53], Fe-Ni[36,46,54-56], and Fe-C-Ni[11,43,44,54]) (b)
Fig.7 Nonchemical driving force and dilatational strain energy of Fe-C-Ni alloys at Ms
1
Jin X J , Gong Y , Han X H , et al . A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
Tian Y Q , Tian G , Zheng X P , et al . C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels [J]. Acta Metall. Sin., 2019, 55: 332
Wang C Y , Chang Y , Yang J , et al . The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
Celada-Casero C , Sietsma J , Santofimia M J . The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
5
Santofimia M J , Zhao L , Petrov R , et al . Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
6
Zhang B , Peng Y H , Lu X , et al . Study of γ→ε martensite transformation of Fe-24Mn-Ge alloys [J]. Acta Metall. Sin., 2001, 37: 1238
Hu L , Wang X , Yi X H , et al . Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
Lee S J , Park K S . Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
9
Finkler H , Schirra M . Transformation behaviour of the high temperature martensitic steels with 8-14% chromium [J]. Steel Res., 1996, 67: 328
10
van Bohemen S M C , Santofimia M J , Sietsma J . Experimental evidence for bainite formation below MS in Fe-0.66C [J]. Scr. Mater., 2008, 58: 488
11
Hsu T Y . An approximate approach for the calculation of MS in iron-base alloys [J]. J. Mater. Sci., 1985, 20: 23
12
Luo Q , Chen H C , Chen W , et al . Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
13
Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
14
Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
15
Ghosh G , Olson G B . Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation-II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
16
Lu Q , Liu S L , Li W , et al . Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
17
Wang C C , Shen C G , Huo X J , et al . Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels [J]. Nucl. Eng. Technol., 2020, 52: 1008
18
Eyercioglu O , Kanca E , Pala M , et al . Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks [J]. J. Mater. Process. Technol., 2008, 200: 146
19
Wang C C , Shen C G , Cui Q , et al . Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
20
You W , Fang H S , Bai B Z . Predicting the martensitic transformation start temperature using back-propagation artificial neural networks [J]. Acta Metall. Sin., 2003, 39: 630
Yang F X , Zheng W S , He Y L , et al . Thermodynamic calculation of martensitic transformation start temperature in Fe-C-Mn-Si-Cr alloys [J]. Shanghai Met., 2016, 38(1): 1
Ishida K . Calculation of the effect of alloying elements on the Ms temperature in steels [J]. J. Alloys Compd., 1995, 220: 126
23
Ishida K . Effect of alloying elements on the critical driving force of martensitic transformation in iron alloys [J]. Scr. Metall., 1977, 11: 237
24
Xie H J , Wu X C , Min Y A . Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel [J]. J. Iron Steel Res. Int., 2008, 15: 56
25
Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: the Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 79
26
van Bohemen S M C , Morsdorf L . Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
27
Wang B H , Bai B Z , Ma H F , et al . Yield ratio of Nb-Ti micro-alloyed Mn-series low carbon bainitic steel with different tempering temperature [J]. Chin. J. Rare Met., 2019, 43: 151
Ji Y P , Ren H P , Peng J , et al . Growth restriction effect of solutes on refinement of solidification structure in iron-based binary alloys [J]. Chin. J. Rare Met., 2020, 44: 886
Nakada N , Kusunoki N , Kajihara M , et al . Difference in thermodynamics between ferrite and martensite in the Fe-Ni system [J]. Scr. Mater., 2017, 138: 105
30
He Y M , Zhang J X , Wang Y H , et al . The expansion behavior caused by deformation-induced martensite to austenite transformation in heavily cold-rolled metastable austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A739: 343
31
Moyer J M , Ansell G S . The volume expansion accompanying the martensite transformation in iron-carbon alloys [J]. Metall. Trans., 1975, 6A: 1785
32
Ren X B , Wang X T . Carbon ordering in Fe-1.83C martensite II. Crystal structure of long-period ordered phase [J]. Acta Metall. Sin., 1994, 30: 337
Hsu T Y , Li L , Jiang B H . Thermodynamic calculation of the equilibrium temperature between the tetragonal and monoclinic phases in CeO2-ZrO2 [J]. Mater. Trans., 1996, 37: 1281
34
Fields R J , Weerasooriya T , Ashby M F . Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel [J]. Metall. Trans., 1980, 11A: 333
35
Field D M , Baker D S , Van Aken D C . On the prediction of α-martensite temperatures in medium manganese steels [J]. Metall. Mater. Trans., 2017, 48A: 2150
36
Kaufman L , Cohen M . The martensitic transformation in the iron-nickel system [J]. JOM, 1956, 8(10): 1393
37
Scheil E , Saftig E . Messung der umwandlungswärme bei der martensitbildung an eisen-nickel-legierungen mit hilfe eines trockeneiskalorimeters [J]. Arch. Eisenhüttenwes., 1960, 31: 623
38
Yeo R B G . Effect of some alloying elements on the transformation of Fe-22.5PctNi alloys [J]. Trans. Metall. Soc. AIME, 1963, 227: 884
39
Ishida K , Nishizawa T . Ferrite/austenite stabilizing parameter of alloying elements in steel at 200-500oC [J]. Trans. Jpn. Inst. Met., 1974, 15: 217
40
Campbell C E . Systems design of high-performance stainless steels [D]. Evanston: Northwestern University, 1997
41
Gabriel A , Gustafson P , Ansara I . A thermodynamic evaluation of the C-Fe-Ni system [J]. Calphad, 1987, 11: 203
42
Ghosh G , Olson G B . Computational thermodynamics and the kinetics of martensitic transformation [J]. J. Phase Equilib., 2001, 22: 199
43
Magee C L , Davies R G . The structure, deformation and strength of ferrous martensites [J]. Acta Metall., 1971, 19: 345
44
Rao M M , Winchell P G . Growth rate of bainite form low-carbon iron-nickel-carbon austenite [J]. Trans. Metall. Soc. AIME, 1967, 239: 956
45
Steven W , Haynes A G . Temperature of formation of martensite and bainite in low-alloy steel [J]. J. Iron Steel Inst., 1956, 183: 349
46
Izumiyama M , Tsuchiya M , Yunoshin I . Effects of alloying element on supercooled A3 transformation of iron [J]. Sci. Rep. Res. Inst., Tohoku Univ., 1970, 22A: 105
47
Li P Y , Wang Y S , Meng F Y , et al . Effect of heat treatment temperature on martensitic transformation and superelasticity of the Ti49Ni51 shape memory alloy [J]. Materials, 2019, 12: 2539
48
Ning B Q , Yan Z S , Fu J C , et al . Austenitic stability process of T91 steel held isothermally above Ms [J]. J. Mater. Sci. Eng., 2011, 29: 21
Hsu T Y , Li J , Zeng Z P . Effect of solution strengthening of austenite on martensitic transformation in Fe-Ni-C alloys [J]. Acta Metall. Sin., 1986, 22(6): 46
Greninger A B . The martensite thermal arrest in iron-carbon alloys and plain carbon steels [J]. Trans. ASM, 1942, 30: 1
51
Wilson E A . The γ→α transformation in iron and its dilute alloys [J]. Scr. Metall., 1970, 4: 309
52
Morozov O P . Règles cinétiques et structurales de transformation de l'austénite dans les aciers [J]. Fiz. Met. Metalloved., 1984, 57: 142
53
Mirzaev D A , Shtejnberg M M , Ponomareva T N , et al . Effect of cooling rate on martensite point position: Carbon steels [J]. Fiz. Met. Metalloved., 1979, 47: 125
54
Goodenow R H , Hehemann R F . Transformation in iron and Fe-9pct Ni alloys [J]. Trans. Metall. Soc. AIME, 1965, 233: 1777
55
Winchell P G , Cohen M . The strength of martensite [J]. Trans. Amer. Soc. Met., 1962, 55: 347
56
Mirzaev D A , Morozov O P , Shtejnberg M M . On the relation between γ➝α transformations in iron and iron alloys [J]. Fiz. Met. Metalloved., 1973, 36: 560