Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1516-1522    DOI: 10.11900/0412.1961.2015.00170
Current Issue | Archive | Adv Search |
EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL
Dongsong RONG,Yong JIANG,Jianming GONG()
College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816
Cite this article: 

Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL. Acta Metall Sin, 2015, 51(12): 1516-1522.

Download:  HTML  PDF(757KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because of excellent corrosion resistance, good toughness and machinability, austenitic stainless steels are widely used in many industries. In order to improve the corrosion resistance, the carbon content of austenitic stainless steel is ultra-low, resulting in low surface hardness, poor wear and fatigue resistance properties which limit its application. Low temperature colossal carburization (LTCC) is a kind of novel surface strengthening technology for significantly increasing the surface hardness of austenitic stainless steels, while keeping their original excellent corrosion resistance because of no formation of carbides. The wear, fatigue and corrosion resistance of austenitic stainless steel of low temperature carburized layer have been investigated in recent years. However, the researches on key technical parameters, especially the carburizing atmosphere and the alloying element, have been rarely reported due to intellectual property protection limits. In this work, OM, EPMA, XRD and IXRD are used to investigate the effects of CO concentration on the microstructure, carbon concentration distribution, phase constitution and residual stress of the carburized layer on 316L austenitic stainless steel surface. Based on thermodynamic theory, the model of carbon transfer and diffusion was also built by software DICTRA to calculate the distribution of carbon concentration and activity of low temperature carburized layer. The results reveal that S phase is detected on 316L austenitic stainless steel surface treated by LTCC, and the compressive residual stress is formed at the same time. The increment of CO concentration can significantly increase the carbon concentration of carburized layer, which improve the hardness and compressive residual stress. The simulated carbon concentration and activity distributions are in accordance with the experimental results when the carbon concentration is lower, but when the carbon concentration is higher, the simulated carbon concentration is lower than experimental results due to the decrease of trapping sites and high compressive residual stress.

Key words:  low temperature colossal carburization      austenitic stainless steel      DICTRA      carbon concentration      activity     
Fund: Supported by National Natural Science Foundation of China (No.51475224), Key University Science Research Project of Jiangsu Province (No.14KJA470002) and Innovation Project for College Graduates of Jiangsu Province (No.CXZZ12_0420)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00170     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1516

Fig.1  Sketch of low temperature colossal carburization (LTCC) of austenitic stainless steel
Fig.2  OM images of cross section of 316L stainless steel treated by LTCC with CO concentrations of 15% (sample S1) (a), 25% (sample S2) (b) and 30% (sample S3) (c)
Fig.3  Experimental and simulated curves of carbon concentration
Fig.4  XRD spectra of 316L stainless steel and sample S3 surface
Fig.5  Relationship between compressive residual stress and carbon concentration of carburized layer
Fig.6  Geometry of LTCC model of austenitic stainless steel (T—carburization temperature)
Fig.7  Relationship between carbon concentration and activity of 316L stainless steel at 743 K
Fig.8  Simulated curves of carbon activity of samples S1, S2 and S3
Fig.9  Simulation curves and measured values of surface carbon concentration of samples S1, S2 and S3
[1] Bowen A W, Leak G M. Metall Trans, 1970; 1: 2767
[2] Bell T, Sun Y. Heat Treat Met, 2002; 29: 57
[3] Qu J, Blau P J, Jolly B C. Wear, 2007; 263: 719
[4] Ceschini L, Minak G. Surf Coat Technol, 2008; 202: 1778
[5] Tokaji K, Kohyama K, Akita M. Int J Fatigue, 2004; 26: 543
[6] Li P, Pan L, Zhang L J, Yang M H, Zhu Y F, Ma F. China Surf Eng, 2013; 26(2): 26
[6] (李 朋, 潘 邻, 张良界, 杨闽红, 朱云峰, 马 飞. 中国表面工程, 2013; 26(2): 26)
[7] Li P, Pan L, Zhang L J, Yang M H, Zhu Y F, Ma F, Wang C H. Surf Technol, 2013; 42(4): 18
[7] (李 朋, 潘 邻, 张良界, 杨闽红, 朱云峰, 马 飞, 王成虎. 表面技术, 2013; 42(4): 18)
[8] Yang M H, Li P, Pan L, Zhang L J, Dong G C. Mater Prot, 2012; 45(7): 60
[8] (杨闽红, 李 朋, 潘 邻, 张良界, 董根成. 材料保护, 2012; 45(7): 60)
[9] Yu Y N. Fundamentals of Materials Science. Beijing: Higher Education Press, 2006: 466
[9] (余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 466)
[10] Andersson J O, Helander T, H?glund L, Shi P, Sundman B. Calphad, 2002; 26: 273
[11] Sudha C, Sivai Bharasi N, Anand R, Shaikh H, Dayal R K, Vijayalakshmi M. J Nucl Mater, 2010; 402: 186
[12] Turpin T, Dulcy J, Gantois M. Metall Mater Trans, 2005; 36A: 2751
[13] Rowan O K, Sisson Jr R D. J Phase Equilib Diff, 2009; 30: 235
[14] Garcia J, Prat O. Appl Surf Sci, 2011; 257: 8894
[15] H?glund L, ?gren J. J Phase Equilib Diff, 2010; 31: 212
[16] Okafor I C I, Carlson O N, Martin D. Metall Trans, 1982; 13A: 1713
[17] Tahara M, Senbokuya H, Kitano K, Hayashida T. Eur Pat, 0678589A1, 1995
[18] Rong D S, Gong J M, Jiang Y, Geng L Y. China Pat, 103323355A, 2013
[18] (荣冬松, 巩建鸣, 姜 勇, 耿鲁阳. 中国专利, 103323355A, 2013)
[19] Michal G M, Ernst F, Heuer A H. Metall Mater Trans, 2006; 37A: 1819
[20] Zhoukov A A, Krishtal M A. Met Sci Heat Treat, 1975; 17: 626
[21] Lei N, Zhou C Y, Hu G M, Chen C. Iron Steel Res, 2010; 22(1): 43
[21] (雷 娜, 周昌玉, 胡桂明, 陈 成. 钢铁研究学报, 2010; 22(1): 43)
[22] Lin H L. Master Thesis, Shanghai Jiao Tong University, 2007
[22] (梁海林. 上海交通大学硕士学位论文, 2007)
[23] Gao W, Long J M, Kong L, Hodgson P D. ISIJ Int, 2004; 44: 869
[24] Edenhofer B. Heat Treat Met, 1995; 22(3): 55
[25] Gupta G S, Chaudhuri A, Kumar P V. Mater Sci Technol, 2002; 18: 1188
[26] Gao W M, Kong L X, John M L, Hodgson P D. J Mater Process Technol, 2009; 209: 497
[27] Gu X T, Michal G M, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45A: 4268
[28] ?gren J. Curr Opin Solid State Mater, 1996; 1: 355
[29] J?nsson B. Int J Mater Res, 1994; 85: 498
[30] Yang F. Mater?Sci Eng,?2005; A409: 153
[31] Parascandola S, M?ller W, Williamson D L. Appl Phys Lett, 2000; 76: 2194
[32] M?ller W, Parascandola S, Kruse O, Günzel R, Richter E. Surf Coat Technol, 1999; 116: 1
[33] Scheuer C J, Cardoso R P, Zanetti F I, Amaral T, Brunatto S F. Surf Coat Technol, 2012; 206: 5085
[34] Ge Y, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45B: 2338
[1] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[2] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[3] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[4] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[5] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[7] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[8] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
[11] Jian PENG,Yi GAO,Qiao DAI,Ying WANG,Kaishang LI. Fatigue and Cycle Plastic Behavior of 316L Austenitic Stainless Steel Under Asymmetric Load[J]. 金属学报, 2019, 55(6): 773-782.
[12] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
[13] Fengming QIN, Yajie LI, Xiaodong ZHAO, Wenwu HE, Huiqin CHEN. Effect of Nitrogen Content on Precipitation Behavior and Mechanical Properties of Mn18Cr18NAustenitic Stainless Steel[J]. 金属学报, 2018, 54(1): 55-64.
[14] Sihan CHEN,Tian LIANG,Long ZHANG,Yingche MA,Zhengjun LIU,Kui LIU. Study on Evolution Mechanism of bcc Phase During Solution Treatment in 6%Si High Silicon Austenitic Stainless Steel[J]. 金属学报, 2017, 53(4): 397-405.
[15] Xiaofeng LU, Ming XIAO, Yangmei CHEN, Bangcheng YANG. Bioactivity of Titanium Metal Hybridized with Inactivated Bacterial Biofilm[J]. 金属学报, 2017, 53(10): 1402-1412.
No Suggested Reading articles found!