Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (11): 1297-1305    DOI: 10.11900/0412.1961.2014.00541
Current Issue | Archive | Adv Search |
TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION
Pingguang XU1(),Jiang YIN2,Shuyan ZHANG3
1 Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195 Japan
2 Jiangsu Asian Star Anchor Chain Co. Ltd., Jingjiang 214533
3 Rutherford Appleton Laboratory, Didcot OX11 0QX United Kingdom
Cite this article: 

Pingguang XU,Jiang YIN,Shuyan ZHANG. TENSILE DEFORMATION BEHAVIOR OF HYDROGEN CHARGED ULTRAHIGH STRENGTH STEEL STUDIED BY IN SITU NEUTRON DIFFRACTION. Acta Metall Sin, 2015, 51(11): 1297-1305.

Download:  HTML  PDF(1200KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile deformation behavior and the axial lattice strain response of 1250 MPa ultra-high strength steels with and without hydrogen charging were comparably investigated using time-of-flight neutron diffraction together with the fracture morphology and microstructure observation. Before tensile loading, the axial (110) lattice plane spacing of hydrogen charged specimen was found larger than that of non-charged specimen while the axial (200) lattice plane spacing of the former was smaller than that of the latter, suggesting that the hydrogen atoms occupied the tetrahedral site promoted the increment of axial (110) lattice plane spacing while the balanced internal stress resulted in the proper decrement of axial (200) lattice plane spacing. The necking and ductile fracture after approaching the 1250 MPa tensile strength occurred in the non-charged specimen, while the brittle fracture occurred in the 8.0×10-6 hydrogen charged specimen at 500 MPa holding during step-by-step loading. The neutron diffraction analysis showed that in the non-charged specimen, the linear elastic deformation was kept up to 500 MPa loading, the nonlinear elastic deformation was observed preferably on the axial (200) reflection at 700 MPa, and then on the axial (110) reflection at 800 MPa; the axial {200} (i.e. <200>//TD, TD—tensile direction) grain orientation-dependent microyielding was observed preferably at 800 MPa while the (211) reflection was still under linear elastic deformation. Comparably, in the hydrogen charged specimen, the nonlinear elastic deformation was observed preferably on the axial (110) reflection at 300 MPa, and then on the axial (200) reflection at 400 MPa; the axial {110} grain orientation-dependent microyielding was observed preferably at 400 MPa while the axial (211) reflection was still under linear elastic deformation. The longitudinally sectioned microstructure observation under fracture surface confirmed the typical <110>-oriented tensile fiber texture in the non-charged specimen while the intergranular cracks along grain boundaries, quasi-cleavage/cleavage cracks and local crystal rotation in various grains of the hydrogen charged specimen. A concept about crystallographic orientation dependent microyielding was employed here to explain the above results, i.e. the hydrogen charging promoted the axial {110} grain orientation-dependent microyielding rather than axial {200} grain orientation-dependent microyielding, and the diffusible hydrogen embrittled the matrix microstructure, accompanying with local plastic deformation.

Key words:  brittle fracture      hydrogen charging      local plastic deformation      high strength low alloy steel      neutron diffraction      lattice strain     
Fund: Supported by National Key Scientific Instrument and Equipment Development Projects (No.2011YQ030112)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00541     OR     https://www.ams.org.cn/EN/Y2015/V51/I11/1297

Fig.1  Thermal desorption analysis curve of diffusional hydrogen in the hydrogen charged and zinc-plated high strength steel specimen after 120 h air exposure at 5~7 ℃
Fig.2  Step-by-step tensile deformation and fracture responses
Fig.3  Peak shift of (110) and (200) diffraction peaks of non-charged specimen during step-by-step tensile deformation[25]
Fig.4  Changes in macroscopic strain and &lt;hkl&gt;//TD orientation-dependent lattice strain of non-charged specimen during step-by-step tensile deformation (TD—tensile direction) [25]
Fig.5  Peak shift of (110) and (200) diffraction peaks of hydrogen-charged specimen during step-by-step tensile deformation
Fig.6  Changes in macroscopic strain and &lt;hkl&gt;//TD orientation-dependent lattice strain of hydrogen-charged specimen during tensile deformation
Specimen Lattice parameter (110) interplanar (200) interplanar (211) interplanar
spacing spacing spacing
Non-charged, No.1 2.86968±0.00003 2.02929±0.00003 1.43502±0.00006 1.17151±0.00003
Hydrogen charged, No.2 2.86967±0.00002 2.02932±0.00002 1.43488±0.00004 1.17151±0.00002
Change in No.2 and No.1 -0.00001 0.00003 -0.00014 0.00000
Hydrogen charged, No.3 2.86971±0.00003 2.02936±0.00002 1.43490±0.00005 1.17154±0.00002
Change in No.3 and No.1 0.00003 0.00007 -0.00012 0.00003
Table 1  Full refinement lattice parameter and single peak fitted interplanar spacing before loading
Fig.7  Fracture morphologies of non-charged specimen (a, b) and hydrogen-charged specimen (c~e)
Fig.8  Microstructures near longitudinally sectioned fracture of in situ tensile specimens, where the inverse pole figure mappings were obtained according to the tensile direction
[1] Matsuyama S. Delayed Fracture.Tokyo: The Nikkan Kogyo Shimbun, Ltd., 1989: 25 (松山晋作. 遅れ破壊. 東京: 日刊工業新聞社, 1989: 25)
[2] Long Q W. Acta Metall Sin, 1980; 16: 109 (龙期威. 金属学报, 1980; 16: 109)
[3] Zhang T Y, Chu W Y, Xiao J M. Sci China, 1986; 16A: 316 (张统一, 褚武扬, 肖纪美. 中国科学, 1986; 16A: 316)
[4] Jiang S R, Quan H S. Acta Phys Sin, 1992; 41: 48 (蒋生蕊, 权宏顺. 物理学报, 1992; 41: 48)
[5] Liang Y, Sofronis P, Aravas N. Acta Mater, 2003; 51: 2717
[6] Sanchez J, Fullea J, Andrade C, de Andres P L. Phys Rev, 2008; 78B: 014113
[7] Castedo A, Sanchez J, Fullea J, Andrade M C, de Andres P L. Phys Rev, 2011; 84B: 094101
[8] Anderson T L. Fracture Mechanics: Fundamentals and Applications. 3rd Ed., Tokyo: Morikita. Co, 2011: 525
[9] Zhang L X, Li L G. Acta Metall Sin, 1982; 18: 402 (张立新, 李黎光. 金属学报, 1982; 18: 402)
[10] Wang M Q, Dong H, Hui W J, Shi J, Akiyama E, Tsuzaki K. Trans Met Heat Treat, 2006; 27(4): 57 (王毛球, 董 瀚, 惠卫军, 时 捷, 秋山英二, 津崎兼彰. 材料热处理学报, 2006; 27(4): 57)
[11] Wang M Q, Akiyama E, Tsuzaki K. Mater Sci Eng, 2005; A398: 37
[12] Maier H J, Kaesche H. Mater Sci Eng, 1989; A117: L11
[13] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G. Mater Sci Eng, 2006; A527: 7252
[14] Akiyama E. ISIJ Int, 2012; 52: 307
[15] Wurushihara W, Yuse F, Nakayama T, Namimura Y, Ibaraki N. Kobe Steel Eng Rep, 2002; 52(3): 57 (漆原亘, 湯瀬文雄, 中山武典, 並村裕一, 茨城信彦. 神戸製鋼技報, 2002; 52(3): 57)
[16] Hagihara Y, Shobu T, Hisamori N, Suzuki H, Takai K, Hirai K. Tetsu Hagané, 2011; 97: 143 (萩原行人, 菖蒲敬人, 久森紀之, 鈴木啓史, 高井健一, 平井敬二. 鉄と鋼, 2011; 97: 143)
[17] Nagumo M. ISIJ Int, 2001; 43: 590
[18] Baird J K, Schwartz E M. Z Phys Chemie Bd, 1999; 211: 47
[19] Ligenza S, Paluchowska B, Konwicki M. Phys Stat Solid, 1988; 106A: K71
[20] Yuan X Z, Wu E D, Guo X M, Du X M, Sun K, Chen D F, Chen B, Sun G A. Atomic Energy Sci Technol, 2007; 41: 517 (苑学众, 吴尔冬, 郭秀梅, 杜晓明, 孙 凯, 陈东风, 陈 波, 孙光爱. 原子能科学技术, 2007; 41: 517)
[21] Nash G L, Choo H, Nash P, Daemn L L, Bourke M A M. Adv X-ray Anal, 2003; 46: 238
[22] Hoelzel M, Danilkin S A, Ehrenberg H, Toebbens D M, Udovic T J, Fuess H, Wipf H. Mater Sci Eng, 2004; A384: 255
[23] Castellote M, Fullea J, de Viedma P G, Andrade C, Alonso C, Llorente I, Turrillas X, Campo J, Schweitzer J S, Spillane T, Livingston R A, Rolfs C, Becker H W. Nucl Inst Methods Phys Res, 2007; 259B: 975
[24] Ishikawa N, Sueyoshi H, Suzuki H, Akita K. Quart J Jpn Weld Soc, 2011; 29: 218 (石川信行, 末吉仁, 鈴木裕士, 秋田貢一.溶接学会論文集,2011; 29: 218)
[25] Yin J, Xu P G, Zhang S Y. Heat Treat, 2013; 28(6): 5 (殷 匠, 徐平光, 张书彦. 热处理, 2013; 28(6): 5)
[26] Abel A, Nuir H. Acta Metall, 1973; 21: 99
[27] Suzuki N, Ishii N, Miyagawa T. Tetsu Hagané, 1996; 82: 170 (鈴木信一, 石井信幸, 宮川敏夫. 鉄と鋼, 1996; 82: 170)
[28] Lorentzen T. In: Fitzpatrick M E, Lodini A eds., Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation. London: Taylor & Francis, 2003: 114
[29] Clausen B, Lorentzen T, Bourke M A M, Daymond M R. Mater Sci Eng, 1999; A259: 17
[1] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[3] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[4] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[5] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] Hailong QIN,Ruiyao ZHANG,Zhongnan BI,Lee Tung Lik,Hongbiao DONG,Jinhui DU,Ji ZHANG. Study on the Evolution of Residual Stress During Ageing Treatment in a GH4169 Alloy Disk[J]. 金属学报, 2019, 55(8): 997-1007.
[7] Zukun YANG, Changsheng ZHANG, Beibei PANG, Yanyan HONG, Fangjie MO, Zhao LIU, Guang'ai SUN. Effect of Initial Microstructures on the Macroscopic Mechanical Properties of Polycrystalline Beryllium[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] Meijuan LI,Xiaolong LIU,Yuntao LIU,Mingyi ZHENG,Chen WANG,Dongfeng CHEN. TEXTURE EVOLUTION AND MECHANICAL PROPER-TIES OF Mg/Al MULTILAYERED COMPOSITE SHEETSPROCESSED BY ACCUMULATIVE ROLL BONDING[J]. 金属学报, 2016, 52(4): 463-472.
[9] FANG Yupei, XIE Zhenjia, SHANG Chengjia. EFFECT OF INDUCTION TEMPERING ON CARBIDE PRECIPITATION BEHAVIOR AND TOUGHNESS OF A 1000 MPa GRADE HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2014, 50(12): 1413-1420.
[10] ZHANG Meng, LIU Danmin, LIU Cuixiu, HUANG Qingzhen, WANG Shaobo, ZHANG Hu, YUE Ming. RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24[J]. 金属学报, 2013, 49(7): 783-788.
[11] JIANG Wenchun WOO Wanchuck WANG Bingying TU Shan–Tung . A STUDY OF RESIDUAL STRESS IN THE REPAIR WELD OF STAINLESS STEEL CLAD PLATE BY NEUTRON DIFFRACTION MEASUREMENT AND FINITE ELEMENT METHOD[J]. 金属学报, 2012, 48(12): 1525-1529.
[12] WANG Lijun CAI Qingwu YU Wei WU Huibin LEI Aidi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL[J]. 金属学报, 2010, 46(6): 687-694.
[13] WU Erdong GUO Xiumei SUN Kai. NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0[J]. 金属学报, 2009, 45(5): 513-518.
[14] . EFFECT OF Bi ON SHEAR STRENGTH OF Sn3Ag0.5Cu-xBi/Cu SOLDER JOINTS[J]. 金属学报, 2008, 44(4): 473-477 .
[15] ;. CRYSTALLOGRAPHIC ANALYSIS OF THE FRACTURE FACETS IN LOW TEMPERATURE BRITTLE FRACTURE OF A HIGH NITROGEN BEARING AUSTENITIC STEEL[J]. 金属学报, 2007, 43(12): 1233-1238 .
No Suggested Reading articles found!