|
|
COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL |
Yaoxiang GENG1,2,Kaiming HAN1,2,Yingmin WANG1,2,Jianbing QIANG1,2( ),Qing WANG1,2,Chuang DONG1,Guifeng ZHANG2,O TEGUS3,Peter HAÜSSLER1,4 |
1 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 3 Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Inner Mongolia Normal University, Hohhot 010022 4 Physics Institute, Chemnitz University of Technology, Chemnitz 09107 |
|
Cite this article:
Yaoxiang GENG,Kaiming HAN,Yingmin WANG,Jianbing QIANG,Qing WANG,Chuang DONG,Guifeng ZHANG,O TEGUS,Peter HAÜSSLER. COMPOSITION DESIGN OF Fe-B-Si-Ta BULK AMORPHOUS ALLOYS BASED ON CLUSTER+ GLUE ATOM MODEL. Acta Metall Sin, 2015, 51(8): 1017-1024.
|
Abstract The structural and compositional features of amorphous alloys can be described by cluster-plus-glue atom model, which is an effective method for the composition design of amorphous alloys. In the Fe-B binary system, Fe2B phase is an intermetallic phase related to Fe83B17 eutectic point. Under the framework of the highest radial number density and isolation principle, the local structure of Fe2B phase is characterized by a B-centered Archimedean octahedral antiprism [B-B2Fe8] atomic cluster. Combined with the electron consistence criterion, the [B-B2Fe8]Fe (here the center and shell atoms are separated by a hyphen, a cluster is enclosed in square brackets, the glue atom is out square brackets) is then determined as an ideal cluster formula for Fe-B binary amorphous. To further enhance the glass-forming ability (GFA) of the alloy, the center B and shell Fe atoms in [B-B2Fe8]Fe are replaced with Si and Ta, respectively, due to their large negative enthalpy of mixing between Si-Fe and (B, Si)-Ta atomic pairs, and Fe-B-Si-Ta quaternary composition series, namely [Si-B2Fe8-xTax]Fe, are thus derived. The experimental results reveal that the bulk amorphous alloys with a diameter of 1.0 mm can be achieved for [Si-B2Fe8-xTax]Fe (x=0.4~0.7) compositions. Among them, [Si-B2Fe7.4Ta0.6]Fe (i.e. Fe70B16.67Si8.33Ta5, atomic fraction, %) is the best glass former, its glass transition temperature Tg, supercooled liquid region ΔTx and the reduced glass transition temperatures Trg are 856 K, 33 K and 0.584, respectively. The Vickers hardness, saturation magnetization and coercivity of the [Si-B2Fe7.6Ta0.4]Fe (i.e. Fe71.67B16.67Si8.33Ta3.33) amorphous alloy are measured to be 1117 HV, 1.37 T, and 3.0 A/m, respectively.
|
Received: 07 November 2014
|
Fund: Supported by National Natural Science Foundation of China (Nos.51131002 and 51041011), Fundamental Research Funds for the Central Universities (No.DUT13ZD102), Scientific and Technological Development Foundation of China Academy of Engineering Physics (No.2013A0301015), National Defense Basic Scientific Research Project (No.B1520133007) and National Magnetic Confinement Fusion Science Program (No.2013GB107003) |
[1] | McHenry M E, Willard M A, Laughlin D E. Prog Mater Sci, 1999; 44: 291 | [2] | Torrens-Serra J, Stoica M, Bednarcik J, Eckert J, Kustov S. Appl Phys Lett, 2013; 102: 041904 | [3] | Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243 | [4] | Inoue A, Shen B L, Chang C T. Acta Mater, 2004; 52: 4093 | [5] | Roth S, Stoica M, Degmov J, Gaitzsch U, Eckert J, Schultz L. J Magn Magn Mater, 2006; 304: 192 | [6] | Inoue A, Shinohara Y, Gook J S. Mater Trans JIM, 1995; 36: 1427 | [7] | Suryanarayana C, Inoue A. Int Mater Rev, 2013; 58: 131 | [8] | Geng Y X, Wang Y M, Qiang J B, Wang Q, Kong F Y, Zhang G F, Dong C. Int J Miner Metall Mater, 2013; 20: 371 | [9] | Zhang W, Inoue A. Mater Trans, 2001; 42: 1835 | [10] | Guo S F, Qiu J L, Yu P, Xie S H, Chen W. Appl Phys Lett, 2014; 105: 161901 | [11] | Inoue A. Proc Jpn Acad, 1997; 73B: 19 | [12] | Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H. J Phys, 2007; 40D: 273 | [13] | Wu J, Wang Q, Qiang J B, Chen F, Dong C, Wang Y M, Shek C H. J Mater Res, 2007; 22: 573 | [14] | Xia J H, Qiang J B, Wang Y M, Wang Q, Dong C. Appl Phys Lett, 2006; 88: 101907 | [15] | WangY M, Wang Q, Zhao J J, Dong C. Scr Mater, 2010; 63: 178 | [16] | Yuan L, Pang C, Wang Y M, Wang Q, Dong C. Intermetallics, 2010; 18: 1800 | [17] | Gaskell P H. In: Beck H, Güntherodt H J eds., Models for the Structure of Amorphous Metals. New York: Springer-Verlag, 1983: 5 | [18] | Dong C, Qiang J B, Yuan L, Wang Q, Wang Y M. Chin J Nonferrous Met, 2011; 21: 2502 (董 闯, 羌建兵, 袁 亮, 王 清, 王英敏. 中国有色金属学报, 2011; 21: 2502) | [19] | Turnbull D. Contemp Phys, 1969; 10: 473 | [20] | Palumbo M, Cacciamani G, Bosco E, Baricco M. Intermetallics, 2003; 11: 1293 | [21] | Aronsson B, Lundstr?m T, Engstr?m I. Some Aspects of the Crystal Chemistry of Borides, Boro-Carbides and Silicides of the Transition Metals. New York: Springer-Verlag, 1968: 3 | [22] | Chen J X, Qiang J B, Wang Q, Dong C. Acta Phys Sin, 2012; 61: 046102 (陈季香, 羌建兵, 王 清, 董 闯. 物理学报, 2012; 61: 046102) | [23] | Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, H?ussler P. Acta Mater, 2011; 59: 5917 | [24] | Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C, H?ussler P. Philos Mag, 2014; 94: 2520 | [25] | Hasegawa R, Ray R. J Appl Phys, 1978; 49: 4174 | [26] | Ray R, Hasegawa R, Chou C P, Davis L A. Scr Metall, 1977; 11: 973 | [27] | Takeuchi A, Inoue A. Mater Trans, 2005; 46: 2817 | [28] | Luborsky F E, Reeve J, Daviesa E A, Liebermann H R. IEEE Trans Magn, 1982; 18: 1385 | [29] | Yavari A R. Acta Metall, 1998; 36: 1863 | [30] | Guo S F, Liu L, Li N, Li Y. Scr Mater, 2010; 62: 329 | [31] | Torrens-Serra J, Bruna P, Stoica M, Roth S, Eckert J. J Non-Cryst Solids, 2013; 367: 30 | [32] | Turnbull D. Contemp Phys, 1969; 10: 473 | [33] | Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 065504 | [34] | Wang W H. Prog Mater Sci, 2012; 57: 487 | [35] | Wang W H. Prog Phys, 2013; 33: 285 (汪卫华. 物理学进展, 2013; 33: 285) | [36] | Chen H S. Rep Prog Phys, 1980; 43: 380 | [37] | Gao F M, He J L, Wu E D, Liu S M, Li D C, Zhang S Y, Tian Y J. Phys Rev Lett, 2003; 91: 015502 | [38] | Ling H B, Li Q, Li H X, Zhang J J, Dong Y Q, Chang C T, Seonghoon Y. J Appl Phys, 2014; 115: 204901 | [39] | Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons Inc, 2009: 210 | [40] | Inoue A, Park R E. Mater Trans JIM, 1996; 37: 1715 | [41] | Babilas R, Nowosielski R. Arch Mater Sci Eng, 2010; 44: 24 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|