Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 587-593    DOI: 10.3724/SP.J.1037.2013.00419
Current Issue | Archive | Adv Search |
MICROSTRUCTURE CHANGE AND ENERGY RELEASE OF FRICTION STIR WELDED Al-Mg-Si ALLOY DURING DSC TEST
DAI Qilei1, LIANG Zhifang2, WU Jianjun1, MENG Lichun3, SHI Qingyu1()
1 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2 Fundamental Industrial Training Center, Tsinghua University, Beijing 100084
3 CSR Sifang Locomotive and Rolling Stock Co. Ltd., Qingdao 266000
Cite this article: 

DAI Qilei, LIANG Zhifang, WU Jianjun, MENG Lichun, SHI Qingyu. MICROSTRUCTURE CHANGE AND ENERGY RELEASE OF FRICTION STIR WELDED Al-Mg-Si ALLOY DURING DSC TEST. Acta Metall Sin, 2014, 50(5): 587-593.

Download:  HTML  PDF(8171KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

During friction stir welding, the nugget zone (NZ) underwent severe plastic deformation and high temperature. This process resulted in high density of dislocations and dissolving of the precipitation. In this study, the stored energy of the NZ in friction stir welded Al-Mg-Si joint was quantitatively analyzed by means of differential scanning calorimetry (DSC). The microstructure of the NZ was investigated by electron back scattering diffraction (EBSD) and transmission electron microscope (TEM). DSC analysis showed that the energy stored in the NZ was about 8.565 J/g. Microstructure investigation showed that the NZ was composed of low-angle grain boundary (42%) and high-angle grain boundary (58%). Meanwhile, there were high density dislocations in the NZ. The stored energy was quantitatively analyzed based on EBSD data and dislocation density. The results showed that the stored energy resulting from the grain boundary and dislocations was about 0.0247 J/g and 0.0712 J/g, respectively. These results proved that the precipitation played dominant role in stored energy while the contribution of grain boundary and dislocations are negligible.

Key words:  friction stir welding (FSW)      electron back scattering diffraction (EBSD)      stored energy      Al-Mg-Si alloy      differential scanning calorimetry (DSC)     
Received:  17 July 2013     
ZTFLH:  TG113  
Fund: Supported by National Natural Science Foundation of China (No.51375259)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00419     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/587

Fig.1  

Al-Mg-Si合金FSW接头宏观和微观组织

Fig.2  

Al-Mg-Si合金FSW接头NZ和母材的DSC曲线

Fig.3  

Al-Mg-Si合金FSW接头NZ的EBSD图

Fig.4  

Al-Mg-Si合金FSW接头NZ组织取向差和亚晶粒大小分布

Fig.5  

Al-Mg-Si合金FSW接头NZ晶粒内的位错结构

Fig.6  

NZ-H的DSC曲线

Fig.7  

NZ-H的EBSD 图

Fig.8  

NZ-H的组织取向差和亚晶粒尺寸分布

Fig.9  

NZ-H的TEM像

Fig.10  

焊态和快速加热下接头的硬度分布

[1] Su J Q, Nelson T W, Mishra R, Mahoney M. Acta Mater, 2003; 51: 713
[2] Su J Q, Nelson T W, Sterling C J. Mater Sci Eng, 2005; A405: 277
[3] Cao W Q, Gu C, Pereloma F E V, Davies C H J. Mater Sci Eng, 2008; A492: 74
[4] Hazra Sujoy S, Gazder Azdiar A, Pereloma Elena V. Mater Sci Eng, 2009; A524: 158
[5] Zhang Y, Wang J T, Cheng C, Liu J Q. J Mater Sci, 2008; 43: 7362
[6] Kim W J, Wang J Y. Mater Sci Eng, 2007; A464: 23
[7] Morris D G, Munoz-Morris M A. Acta Mater, 2002; 50: 4047
[8] Dai Q L, Liang Z F, Chen G Q, Meng L C, Shi Q Y. Mater Sci Eng, 2013; A580: 184
[9] Dalla Torre F H, Gazder A A, Pereloma E V, Davies C H J. J Mater Sci, 2007; 42: 1622
[10] Wu X L, Li B, Ma E. Appl Phys Lett, 2007; 91: 141908
[11] Read W T, Shockley W. Phys Rev, 1950; 78: 275
[12] Humphreys F J,Hatherly M. Recrystallization and Related Annealing Phenomena. 2nd Ed., Oxford: Pergamon Press, 2004: 16
[13] Godfrey A, Cao W Q, Hansen N, Liu Q. Metall Mater Trans, 2005; 36A: 2371
[14] Beaver M B, Holt D L, Titchener A L. Prog Mater Sci, 1973; 17: 5
[15] Woo W, Balogh L, Ungár T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308
[16] Woo W, Ungár T, Feng Z L, Kenik E, Clausen B. Metall Mater Trans, 2010; 41A: 1210
[17] Dutta I, Allen S M. Mater Sci Lett, 1991; 10: 323
[18] Yang W C, Wang M P, Sheng X F, Zhang Q, Wang Z A. Acta Metall Sin, 2010; 46: 1481
(杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安. 金属学报, 2010; 46: 1481)
[19] Edwards G A, Stiller K, Dunlop G L, Couper M J. Acta Mater, 1998; 46: 3893
[20] Gao N, Starink J M, Langdon T G. Mater Sci Technol, 2009; 25: 687
[1] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[2] Xuemei XIANG, Yuxiang LAI, Chunhui LIU, Jianghua CHEN. Sn-Induced Modification of the Precipitation Pathways upon High-Temperature Ageing in an Al-Mg-Si Alloy[J]. 金属学报, 2018, 54(9): 1273-1280.
[3] Ju KANG,Suying LIANG,Aiping WU,Quan LI,Guoqing WANG. Local Liquation Phenomenon and Its Effect on Mechanical Properties of Joint in Friction Stir Welded 2219 Al Alloy[J]. 金属学报, 2017, 53(3): 358-368.
[4] Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding[J]. 金属学报, 2017, 53(12): 1651-1658.
[5] Rui CHEN,Qingyan XU,Baicheng LIU. MODELLING INVESTIGATION OF PRECIPITATION KINETICS AND STRENGTHENING FOR NEEDLE/ROD-SHAPED PRECIPITATES INAl-Mg-Si ALLOYS[J]. 金属学报, 2016, 52(8): 987-999.
[6] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
[7] HUANG Hongtao Godfrey Andrew LIU Wei TANG Ruihe LIU Qing. EFFECT OF SAMPLE ORIENTATION ON STATIC RECRYSTALLIZATION OF AZ31 MAGNESIUM ALLOY[J]. 金属学报, 2012, 48(8): 915-921.
[8] KANG Ju LUAN Guohong FU Ruidong. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF BANDED TEXTURES OF FRICTION STIR WELDED 7075-T6 ALUMINUM ALLOY[J]. 金属学报, 2011, 47(2): 224-230.
[9] . SIMULATION OF STATIC RECRYSTALLIZATION OF HOT DEFORMED AUSTENITE IN A LOW CABON STEEL ON MESOSCALE[J]. 金属学报, 2006, 42(5): 474-480 .
[10] JIANG Daming;HONG Bande;LEI Tingquan Harbin Institute of Technology. INFLUENCE OF COMPOSITION AND DISPERSOID ON FATIGUE FRACTURE BEHAVIOUR OF Al-Mg-Si ALLOYS[J]. 金属学报, 1990, 26(5): 76-78.
No Suggested Reading articles found!