Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 415-422    DOI: 10.3724/SP.J.1037.2013.00556
Current Issue | Archive | Adv Search |
MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL
GUO Pengcheng1,2, QIAN Lihe1(), MENG Jiangying1, ZHANG Fucheng1
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
2 State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082
Cite this article: 

GUO Pengcheng, QIAN Lihe, MENG Jiangying, ZHANG Fucheng. MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL. Acta Metall Sin, 2014, 50(4): 415-422.

Download:  HTML  PDF(2313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Twinning-induced plasticity (TWIP) steel, having a great potential in applications in the automotive industry as a new generation of advanced steels, has attracted much attention in recent years because of the excellent combinations of strength and ductility resulting from deformation twinning. The monotonic tension behavior of TWIP steels has been extensively investigated; however, the serration behavior and low-cycle fatigue (LCF) properties have not been well understood. In order to obtain a good understanding of the mechanisms of room temperature serrated flows and the cyclic deformation behavior, the monotonic tensile deformation and fully reversed tension-compression LCF behaviors along with the deformed microstructures of an annealed TWIP steel were investigated in the present work. Both monotonic and fatigue tests were performed at room temperature with a strain rate of 6×10-3 s-1. The fatigue tests were conducted under total strain amplitude control with strain amplitudes ranging from 0.002 to 0.01. The tensile results show that the serrated plastic flows of stress-strain curves, presenting distinct characteristics at various strain levels, exhibit strong strain-level sensitivity. With increasing strain, the type A serrations featured by fine step-like flow are gradually replaced by the largely increased amplitude of type A serrations and their oscillation frequency decreases apparently; however, the frequency of type B serrations increases and the amplitude reduces slightly. The LCF fatigue results show that high cyclic hardening capacity is exhibited at all strain levels. At low strain amplitudes, the steel exhibits a very small initial cyclic hardening followed by a long saturation untill fracture. At medium strain amplitudes, a moderate initial cyclic hardening is followed by different degrees of cyclic softening depending on the applied strain amplitude, and then saturation untill fracture. At high strain amplitudes, the steel shows a rapid cyclic hardening quickly followed by softening till final fracture, almost without a saturation stage. Furthermore, at higher strain amplitudes, cyclic loading is found to lead to the generation of fine deformation twins in addition to high density of dislocation substructures, including dislocation walls and cell-like structures.

Key words:  twinning-induced plasticity (TWIP) steel      dynamic strain aging      strain hardening      low-cycle fatigue      deformation twin     
Received:  05 September 2013     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (No.51171166) and Natural Science Foundation of Hebei Province (No.E2011203066)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00556     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/415

Fig.1  

高锰奥氏体孪生诱发塑性(TWIP)钢的工程应力-应变曲线

Fig.2  

高锰奥氏体TWIP钢的真应力-真应变曲线与应变硬化率曲线

Fig.3  

高锰奥氏体TWIP钢的OM像

Fig.4  

高锰奥氏体TWIP钢在不同应变幅下循环稳定和半寿命时的滞后回线

Fig.5  

高锰奥氏体TWIP钢的循环应力响应曲线

Fig.6  

高锰奥氏体TWIP钢的应变幅-循环反向数的关系曲线

Fig.7  

高锰奥氏体TWIP钢的循环应力幅-塑性应变幅关系曲线

Fig.8  

不同状态下高锰奥氏体TWIP钢的TEM像

[1] Allain S, Chateau J P, Bouaziz O. Mater Sci Eng, 2004; A387-389: 143
[2] Park K T, Jin K G, Han S H, Hwang S W, Choi K, Lee C S. Mater Sci Eng, 2010; A527: 3651
[3] Dumay A, Chateau J P, Allain S, Migot S, Bouaziz O. Mater Sci Eng, 2008; A483-484: 184
[4] Jiménez J A, Frommeyer G. Mater Charact, 2010; 61: 221
[5] Bouaziz O, Allain S, Scott C P, Cugy P, Barbier D. Curr Opin Solid State Mater Sci, 2011; 15: 141
[6] Hamada A S, Karjalainen L P, Somani M C. Mater Sci Eng, 2007; A467: 114
[7] Jin J E, Lee Y K. Acta Mater, 2012; 60: 1680
[8] Lebedkina T A, Lebyodkin M A, Chateau J P, Jacques A, Allain S. Mater Sci Eng, 2009; A519: 147
[9] Lee S J, Kim J, Kane S N, Cooman B C D. Acta Mater, 2011; 59: 6809
[10] Qian L, Guo P, Meng J, Zhang F. Mater Sci Eng, 2013; A561: 266
[11] Hamada A S, Karjalainen L P, Ferraiuolo A, Sevillano J G, Cuevas F, Pratolongo G, Reis M. Metall Mater Trans, 2010; 41A: 1102
[12] Hamada A S, Karjalainen L P. Mater Sci Eng, 2010; A527: 5715
[13] Niendorf T, Rubitschek F, Maier H J, Niendorf J, Richard H A, Frehn A. Mater Sci Eng, 2010; A527: 2412
[14] Lambers H G, Rusing C J, Niendorf T, Geissler D, Freudenberger J, Maier H J. Int J Fatigue, 2012; 41: 51
[15] Kim Y W, Kim G, Hong S G, Lee C S. Mater Sci Eng, 2011; A528: 4696
[16] Karjalainen L P, Hamada A, Misra R D K, Porter D A. Scr Mater, 2012; 66: 712
[17] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[18] Kalidindi S R. Int J Plast, 1998; 14: 1265
[19] McCormick P G. Acta Metall, 1971; 19: 463
[20] Huang Z W, Yuan F H, Wang Z G, Zhu S J, Wang F G. Acta Metall Sin, 2007; 43: 1025
(黄志伟, 袁福河, 王中光, 朱世杰, 王富岗. 金属学报, 2007; 43: 1025)
[21] Chen L J, Wang Z G, Yao G, Tian J F. Int J Fatigue,1999; 21: 791
[22] Renard K, Ryelandt S, Jacques P J. Mater Sci Eng, 2010; A527: 2969
[23] McCormigk P G. Acta Metall, 1972; 20: 351
[24] Wijler A, Vrijhoef M M A, Beukel A V D. Acta Metall, 1974; 22: 13
[25] Rémy L. Metall Trans, 1981; 12A: 387
[26] Hong S G, Lee S B. J Nucl Mater, 2004; 328: 232
[1] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[5] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[6] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[7] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[8] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[9] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[10] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[11] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[12] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[13] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[14] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[15] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
No Suggested Reading articles found!