Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1143-1147    DOI: 10.3724/SP.J.1037.2013.00179
Current Issue | Archive | Adv Search |
INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY βTi-Mo-Zr(Sn) ALLOYS ON YOUNG'S MODULUS AND MECHANICAL PROPERTIES
LI Qun, WANG Qing, LI Xiaona, GAO Xiaoxia, DONG Chuang
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education,School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

LI Qun, WANG Qing, LI Xiaona, GAO Xiaoxia, DONG Chuang. INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY βTi-Mo-Zr(Sn) ALLOYS ON YOUNG'S MODULUS AND MECHANICAL PROPERTIES. Acta Metall Sin, 2013, 49(9): 1143-1147.

Download:  PDF(2606KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influences of second phase precipitations of low Young's modulus (E) βTi alloys [MoTi14]Zr1 (Ti78.2Mo11.2Zr10.6) and [SnTi14]Mo1(Ti75.7Mo10.9Sn13.4) on mechanical properties as well as the variation of phase constitutions of alloys during tensile test were investigated. Alloy rods with 6 mm diameter were prepared by copper-mould suction-cast method. Phase precipitations and microstructures of alloys before and after tension were analyzed by XRD and TEM techniques. The experimental results showed that only a minor amount of   α〞martensite precipitated on β matrix makes the suction-cast [SnTi14]Mo1 alloy possess lower E with a value of 70 GPa, while ω precipitation increases the E (80 GPa) of [MoTi14]Zr1 alloy. It is due to the thinner β plate twins that makes [SnTi14]Mo1 alloy have better mechanical properties. During tensile testing, the amount of  α〞martensite induced by stress increases in [MoTi14]Zr1 alloy while β grains in [SnTi14]Mo1 alloy are easier to be rotated for deformation, which favors to enhance the ductility of alloys.

Key words:  Ti-Mo-Zr(Sn) alloy      β-Ti alloy      low Young's modulus      phase precipitation     
Received:  31 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00179     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1143

[1] Long M, Rack H J.  Biomaterials, 1998; 19: 1621

[2] Niinomi M.  Mater Sci Eng, 1998; A243: 231
[3] Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R,Yamada A, Ito K, Seno Y.  Science, 2003; 300: 464
[4] Ahmed T, Long M, Silvestri J, Ruiz C, Rack H J. In: Blenkinsop P, Evans W J, Flower H M eds.,  Preceeding 8th World Titanium Conference, Birmingham, UK: The Institute of Metals, 1996: 1760
[5] Ikeda M, Komatsu S-Y, Sowa I, Niinomi M.  Metall Mater Trans, 2002; 33A: 487
[6] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R.  Acta Biomater, 2007; 3: 277
[7] Ho W-F.  J Med Biol Eng, 2008; 28(1): 47
[8] Guo S, Bao Z Z, Meng Q K, Hu L, Zhao X Q.  Metall Mater Trans, 2012; 43A: 3447
[9] Abdel-Hady M, Hinoshita K, Morinaga M.  Scr Mater, 2006; 55: 477
[10] Hao Y L, Yang R, Niinomi M, Kuroda D, Zhou Y L, Fukunaga K, Suzuki A.Metall Mater Trans, 2002; 33A: 3137
[11] Wood R M.  Acta Metall, 1963; 11: 907
[12] Talling R J, Dashwood R J, Jackson M, Dye D.  Acta Mater, 2009; 57: 1188
[13] Zhao X L, Niinomi M, Nakai M, Miyamoto G, Furuhara T.  Acta Biomater, 2011; 7: 3230
[14] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H.  J Phys, 2007; 40D: R273
[15] Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C.  Acta Phys Sin, 2011; 60: 116101
(郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 物理学报, 2011; 60: 116101)
[16] Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C.  Metall Mater Trans, 2013; 44A: 1872
[17] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C.  Acta Metall Sin, 2010; 46: 1034
(马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯. 金属学报, 2010; 46: 1034)
[18] Takeuchi A, Inoue A.  Mater Trans, 2005; 46: 2817
[19] Hao Y L, Li S J, Sun S Y, Yang R.  Mater Sci Eng, 2006; A441: 112
[20] Moffat D L, Larbalestier D C.  Metall Mater Trans, 1988; 19A: 1677
[21] Xu Z Y.  Acta Metall Sin, 1997; 33: 45
(徐祖耀. 金属学报, 1997; 33: 45)
[22] Huang L J.  PhD Dissertation, Beijing Institute of Aeronautical Material, 2006
(黄利军. 北京航空材料研究院博士学位论文, 2006)
[23] Niinomi M.  Mater Sci Eng, 1998; A243: 231
[24] Martins D Q, Osorio W R, Souza M E, Caram R, Garcia A.  Electrochim Acta, 2008; 53: 2809
[25] Bania P J.  J Met, 1994; 64(7): 16
[1] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[2] LI Xiaolin, WANG Zhaodong. INTERPHASE PRECIPITATION BEHAVIORS OF NANOMETER-SIZED CARBIDES IN A Nb-Ti-BEARING LOW-CARBON MICROALLOYED STEEL[J]. 金属学报, 2015, 51(4): 417-424.
[3] CHEN Jun, LÜ Mengyang, TANG Shuai, LIU Zhenyu, WANG Guodong. MICROSTRUCTURE, MECHANICAL PROPERTIES AND INTERPHASE PRECIPITATION BEHAVIORS IN V-Ti MICROALLOYED STEEL[J]. 金属学报, 2014, 50(5): 524-530.
[4] LI Chuang WANG Xuemin SHANG Chengjia ZHENG Chang’an HE Xinlai. STUDY ON PRECIPITATION BEHAVIOR OF PHASES CONTAINING Cu IN THE Cu–BEARING STEEL IN CONTINUOUS COOLING PROCESS[J]. 金属学报, 2010, 46(12): 1488-1494.
[5] LI Yingju; YANG Yuansheng; FENG Xiaohui; ZHANG Yunan; HU Zhuangqi. EFFECT OF DC ELECTRIC CURRENT ON THE PRECIPITATION OF γ '-PHASE IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2006, 42(9): 942-946 .
[6] LIU Zhiguo;CHEN Yong;CAO Yanni;ZHU Zhengsheng Nanjing University Shanxi Iron and Steel Institute; Xi'an professor;Department of Physics;Nanjing University;Nanjing 210008. PRECIPITATION HARDENING OF ELINVAR ALLOY[J]. 金属学报, 1990, 26(4): 40-44.
No Suggested Reading articles found!