A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL
WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:
WANG Ying, ZHANG Ke, GUO Zhenghong, CHEN Nailu, RONG Yonghua. A NEW EFFECT OF RETAINED AUSTENITE ON DUCTILITY ENHANCEMENT OF LOW CARBON Q-P-T STEEL. Acta Metall Sin, 2012, 48(6): 641-648.
Abstract A low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (mass fraction, %) steel exhibits the combination of high tensile strength and good elongation after treated by a novel quenching-partitioning-tempering (Q-P-T) process. The variation in volume fraction of retained austenite in this steel with strain is measured by XRD, and the deformed twin-type martensite plates are also observed by TEM, from which the transformation induced plasticity (TRIP) effect in this steel is confirmed. Based on the measurement of average dislocation densities in both martensite and retained austenite combined with TEM observation, the effect of dislocation absorption by retained austenite (DARA) is found in the low carbon steel, similar to that in the medium carbon steel proposed recently, from which the generation conditions of DARA effect is proposed, and the mechanism of retained austenite on ductility enhancement of high strength steel is clarified.
[1] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale:Association for Iron-Steel Technology, 2004: 11
[2] Sugimoto K, Kobayshi M, Hashimoto S. Metall Trans, 1992; 23: 3085
[3] Speer J G, Matlock D K, Cooman B C, Schroch J G. Acta Mater,2003; 51: 2661
[4] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum,2003; 426-432: 1089
[5] Xu Z Y. Mater Sci Forum, 2007; 561-565: 2283
[6] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261
[7] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin,2011; 47: 489
(张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报,2011; 47: 489)
[8] Zhong N, Wang X D, Rong Y H, Wang L. Mater Sci Eng, 2009; A506: 111
[9] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H. Mater Sci Eng,2011; A528: 8006
[10] Zackay V F, Parker E R, Fahr D, Busch R. ASM Trans Quart,1967; 60: 252
[11] Webster D. ASM Trans Quart, 1968; 61: 816
[12] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H. Mater Sci Eng, 2011; A528: 8486
[13] Rong Y H. Acta Metall Sin, 2011; 47: 1483
(戎咏华. 金属学报, 2011; 47: 1483)
[14] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[15] Fan X. Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159
(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)
[16] Durnin J, Ridal K A. J Iron Steel Inst, 1968; 1: 60
[17] Heimendahl M V. Electron Microscopy of Materials: An Introduction. New York: Academic Press, 1980: 185
[18] Woo W, Balogh L, Ungar T, Choo H, Feng Z L. Mater Sci Eng, 2008; A498: 308
[19] Li W, Xu W Z, Wang X D, Rong Y H. J Alloys Compd, 2009; 474: 546
[20] Stokes A R. Proc Phys Soc, 1948; 61: 382
[21] Baker R G, Nutting J. ISI Special Report No. 64.London: The Iron and Steel Institute, 1959: 1
[22] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[23] Wasserbach W. Philos Mag, 1986; A53: 335
[24] Rhee M, Zbib H M, Hirth J P, Huang H, Rubia T. Modelling Simul Mater Sci Eng, 1998; 6: 467
[25] Mitchell T E, Spitzig W A. Acta Metall, 1965; 13: 1169