Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (7): 832-837    DOI: 10.3724/SP.J.1037.2010.00110
论文 Current Issue | Archive | Adv Search |
EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL
FU Liming, SHAN Aidang, WANG Wei
1) School of Material Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
2) Research Institute, Baoshan Iron $\&$ Steel Co., Ltd., Shanghai 201900
Cite this article: 

FU Liming SHAN Aidang WANG Wei. EFFECT OF Nb SOLUTE DRAG AND NbC PRECIPITATE PINNING ON THE RECRYSTALLIZATION GRAIN GROWTH IN LOW CARBON Nb-MICROACLOYED STEEL. Acta Metall Sin, 2010, 46(7): 832-837.

Download:  PDF(896KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A kinetic equation for austenite grain growth has been derived concerning the mutual effect of NbC and Nb solute in low carbon Nb-microalloyed steels. It is shown that both solute drag of Nb in solid solution and pinning of NbC particles inhibit the grain boundary migration during grain growth after recrystallization in low carbon Nb-microalloyed steels. At high temperatures the NbC pinning plays a dominate role for retarding the austenite grain growth with less Nb solute drag effect. An obvious Nb solute drag restraint was, however, observed at relatively low temperatures. Also, the theoretical calculations are in good agreement with experimental results. The effectiveness of drag effect of soluble atoms and pinning effect of precipitates can be characterized by a p factor. The pinning of precipitates and solute drag of soluble atoms are more effective for suppressing grain growth as p>0 and p<0, respectively. And the ratio of Nb in solute and Nb in precipitate as p=0 reaches the priority and most effectively retards the grain growth. In the traditional hot rolling or< austenitizing temperature range, a strong suppression for grain growth after recrystallization could be obtained due to those fine NbC particles smaller than 10 nm in Nb-microalloyed steels.

Key words:  grain growth      precipitates pinning      solute drag      low carbon Nb-microalloyed steel     
Received:  04 March 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00110     OR     https://www.ams.org.cn/EN/Y2010/V46/I7/832

[1] Zener C. Trans AIME, 1948; 175: 47
[2] Smith C S. Trans AIME, 1948; 175: 15
[3] Cahn J W. Acta Metall, 1962; 10: 789
[4] Wang H R, Wang W. Mater Sci Technol, 2007; 23: 1305
[5] Zurob H S. PhD Thesis, McMaster University, Hamilton, 2003
[6] Sinclair C W, Huchinson C R, Brechet Y. Metall Trans, 2007; 38A: 821
[7] Qiao G Y, Xiao F R, Zhang X B, Cao Y B, Liao B. Trans Nonferrous Met Soc China, 2009; 19: 1395
[8] Wang X L, Wei Y H, Wang W, Hou L F. Acta Metall Sin (Engl Lett), 2008; 21: 8
[9] Zurob H S, Brechet Y, Purdy G. Acta Mater, 2001; 49: 4183
[10] Zhang Z H, Liu Y N, Liang X K, She Y. Mater Sci Eng, 2008; A474: 254
[11] Zaky Farahat A I. J Mater Proc Technol, 2008; 204: 365
[12] Bai D Q, Yue S, Sun W P, Jonas J J. Metall Mater Trans, 1993; 24A: 2151
[13] Maruyama N, Uemori R, Sugiyama M. Mater Sci Eng, 1998; A250: 2
[14] Beck P A, Kremer J C, Demer L J. Trans AIME, 1948; 175: 372
[15] Hillert M. Acta Metall, 1965; 13: 227
[16] Turnbull D. Trans AIME, 1951; 191: 661
[17] Mazzi N, Rouag N. Model Simul Mater Sci Eng, 2001; 9: 423
[18] Hansen S S, Vandersande J B, Cohen M. Metall Trans, 1980; 11A: 387
[19] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press, 1996: 11
[20] Ashby M F, Harper J, Lewis J. Trans Metall Soc AIME, 1969; 245: 413
[21] Doherty R D. Met Sci, 1982; 16: 1
[22] Gladman T. The Physical Metallurgy of Microallyed Steel. London: Institute of Metals, 1997: 1
[23] Zhang P J, Fu L M, Wang W. Iron Steel Suppl, 2005; 40: 666
[24] Maruyama N, Smith G DW. Mater Sci Forum, 2004; 467– 470: 949
[25] Mclean D. Grain Boundaries in Metals. Oxford: Clarendon, 1957: 116
[26] Wang W, Wang H R. Mater Lett, 2007; 61: 2227
[27] Dutta B, Palmiere E J, Sellars C M. Acta Mater, 2001; 49: 785
[28] Frost H J, Ashby M F. Deformation–Mechanism Maps. Oxford: Pergamon Press, 1982: 21
[29] Enomoto M, Aaronson H I. Metall Trans, 1986; 17A: 1381
[30] Gamsjager E, Svoboda J, Fischer F D. Comput Mater Sci, 2005; 32: 360
[31] James D W, Leak G M. Philos Mag, 1965; 12: 491
[32] Geise J, Herzig C. Z Metallkd, 1985; 76: 622
[33] Jones A R, Ralph B. Acta Metall, 1975; 23: 355
[34] Jonas J J, AkbenM G. Mater Forum, 1981; 4: 92
[35] Dutta B, Sellars C M. Mater Sci Technol, 1987; 3: 97

[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[3] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[4] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[7] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[8] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[9] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[10] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[11] NIE Wenjin SHANG Chengjia WU Shengjie SHI Peijian CHENG Junjie ZHANG Xiaobing. EFFECTS OF Nb ON RECOVERY OF HOT-DEFORMED AUSTENITE[J]. 金属学报, 2012, 48(7): 775-781.
[12] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
[13] ZHOU Guangzhao WANG Yongxin CHEN Zheng. PHASE–FIELD METHOD SIMULATION OF THE EFFECT OF HARD PARTICLES WITH DIFFERENT SHAPES ON TWO–PHASE GRAIN GROWTH[J]. 金属学报, 2012, 48(2): 227-234.
[14] CHEN Weiye TONG Weiping ZHANG Hui ZHAO Xiang ZUO Liang. TEXTURE EVOLUTION AND GROWTH OF DIFFERENTLY SIZED GRAINS IN IF STEEL DURING ANNEALING[J]. 金属学报, 2010, 46(9): 1055-1060.
[15] ZHOU Yizhou JIN Tao SUN Xiaofeng. STRUCTURE EVOLUTION IN DIRECTIONALLY SOLIDIFIED BICRYSTALS OF NICKEL BASE SUPERALLOYS[J]. 金属学报, 2010, 46(11): 1327-1334.
No Suggested Reading articles found!