Please wait a minute...
Acta Metall Sin  1988, Vol. 24 Issue (4): 276-281    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF CATHODIC PROTECTION ON FRACTURE BEHAVIOUR OF LOWALLOY STEELS IN SEAWATER
ZHENG Wenlong;ZHU Xiying;SU Limin Shanghai Research Institute of Materials
Cite this article: 

ZHENG Wenlong;ZHU Xiying;SU Limin Shanghai Research Institute of Materials. EFFECT OF CATHODIC PROTECTION ON FRACTURE BEHAVIOUR OF LOWALLOY STEELS IN SEAWATER. Acta Metall Sin, 1988, 24(4): 276-281.

Download:  PDF(539KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fracture behaviour of low-all oysteels AISI4340, HY100, WELTEN60, AISIA537 and A131 in artificial seawater under static, cyclic loading and cath-odic protection potential has been investigated by using fracture mechanics, elec-trochemistry and electronfractography. The results reveal that under hydrogen evo-lution potential (cathodic protection potential) the critical yield strength requiredfor the occurrence of SCC decreases from 985 to 872MPa comparing with corrosionpotential (E_c). The effect of cathodic protection on crack propagation of CF is notsimple, it is closely related to the yield strength of steels and their SCC behaviour.For the steels with high yield strength, cathodic protection promotes da/dN
Key words:  Low-alloy steel      cathodic protection      stress corrosion crack      corrosion fatigue      crack propagation rate     
Received:  18 April 1988     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1988/V24/I4/276

1 徐克薰,俞健,郑文龙.机械工程材料,1985;9(1) :1
2 Duquette D J, Uhlig H H. ASM Trans Q, 1968; 61: 449
3 #12
4 Hooper W C, Hartt W H. Corros, 1978: 34: 320
5 Hartt W H. Hooper W C. Corros, 1980; 36: 107
6 Scott P M, Silvester D R V. The Influence of Mean Tensile Stress on Corrosion Fatigue Crack Growth in Structural Steel Immersed in Seawater, ITR3/62, UK Offshore Steels Research Project, Proceeding of European Offshore Steels Research Seminar, London, May 25, 1977, III/p. 5-2
7 Hartt W H. ASTM STP761, 1982: 1--14
8 郑文龙,朱国培,欧阳怀谨,李革.金属学报,1986;22:275-281
9 National Association of Corrosion Engineers Standard TM-01-77, In: Mater Perform 1977; 16 (9) : 61p
[1] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[2] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[3] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[4] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[5] Ping DENG,Chen SUN,Qunjia PENG,En-Hou HAN,Wei KE,Zhijie JIAO. Study on Irradiation Assisted Stress Corrosion Cracking of Nuclear Grade 304 Stainless Steel[J]. 金属学报, 2019, 55(3): 349-361.
[6] Jun YU, Deping ZHANG, Ruosheng PAN, Zehua DONG. Electrochemical Noise of Stress Corrosion Cracking of P110 Tubing Steel in Sulphur-Containing Downhole Annular Fluid[J]. 金属学报, 2018, 54(10): 1399-1407.
[7] Hongzhong YUAN,Zhiyong LIU,Xiaogang LI,Cuiwei DU. Influence of Applied Potential on the Stress Corrosion Behavior of X90 Pipeline Steel and Its Weld Joint in Simulated Solution of Near Neutral Soil Environment[J]. 金属学报, 2017, 53(7): 797-807.
[8] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[9] Hongliang MING,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN,Mingxing SU. Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. 金属学报, 2017, 53(1): 57-69.
[10] Maocheng YAN,Shuang YANG,Jin XU,Cheng SUN,Tangqing WU,Changkun YU,Wei KE. STRESS CORROSION CRACKING OF X80 PIPELINE STEEL AT COATING DEFECT IN ACIDIC SOIL[J]. 金属学报, 2016, 52(9): 1133-1141.
[11] Zhiyong LIU,Zongshu LI,Xiaolin ZHAN,Wenzhu HUANGFU,Cuiwei DU,Xiaogang LI. GROWTH BEHAVIOR AND MECHANISM OF STRESS CORROSION CRACKS OF X80 PIPELINE STEEL IN SIMULATED YINGTAN SOIL SOLUTION[J]. 金属学报, 2016, 52(8): 965-972.
[12] Zilong ZHANG, Shuang XIA, Wei CAO, Hui LI, Bangxin ZHOU, Qin BAI. EFFECTS OF GRAIN BOUNDARY CHARACTER ON INTERGRANULAR STRESS CORROSION CRACKING INITIATION IN 316 STAINLESS STEEL[J]. 金属学报, 2016, 52(3): 313-319.
[13] Hongchi MA, Cuiwei DU, Zhiyong LIU, Wenkui HAO, Xiaogang LI, Chao LIU. STRESS CORROSION BEHAVIORS OF E690 HIGH-STRENGTH STEEL IN SO2-POLLUTED MARINE ATMOSPHERE[J]. 金属学报, 2016, 52(3): 331-340.
[14] Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. 金属学报, 2016, 52(10): 1326-1332.
[15] Ju KANG,Jichao LI,Zhicao FENG,Guisheng ZOU,Guoqing WANG,Aiping WU. INVESTIGATION ON MECHANICAL AND STRESS CORROSION CRACKING PROPERTIES OF WEAKNESS ZONE IN FRICTION STIR WELDED 2219-T8 Al ALLOY[J]. 金属学报, 2016, 52(1): 60-70.
No Suggested Reading articles found!