Please wait a minute...
Acta Metall Sin  1995, Vol. 31 Issue (19): 305-310    DOI:
Current Issue | Archive | Adv Search |
A STUDY ON SENSOR-PROCEDURE FOR MEASURING HYDROGEN ACTIVITY IN MOLTEN Al ALLOY
CHEN Wei; WANG Changzhen; LIU Liang(Northeastern University; Shenyang110006)(Manuscript received 1994-02-10; in revised form 1994-11-08)
Cite this article: 

CHEN Wei; WANG Changzhen; LIU Liang(Northeastern University; Shenyang110006)(Manuscript received 1994-02-10; in revised form 1994-11-08). A STUDY ON SENSOR-PROCEDURE FOR MEASURING HYDROGEN ACTIVITY IN MOLTEN Al ALLOY. Acta Metall Sin, 1995, 31(19): 305-310.

Download:  PDF(415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  BaCe_(0.95)Y_(0.05)O_(3-α) electrolyte is prepared by solid state reaction. In the temperature range of 450-1000℃, the conductivity is 10~(-3)-10~(-2) S·cm~(-1),the activation energy in air is 0.49 eV, measured by impedance spectroscopy technology. The hydrogen sensors for measureing the hydrogen activity in molten Al alloy is manufactured, using BaCe_(0.95)Y_(0.05)O_(3-α) as solid electrolyte, metal hydride as reference electrode and Mo wire as lead wire. The results showed that the sensor has a high sensitivity and a good stability within the range of experiment temperature.(Correspondent: WANG Changzhen, professor, Faculty of Metallurgical Physical Chemistry, Northeastern University, Shenyang 110006)
Key words:  sensor      BaCeO_3      solid electrolyte      activity      hydrogen     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1995/V31/I19/305

1IwaharaH,EsakaT,UchidaH.MaedaN.SolidStateIonics,1981;3-4:3592IwaharaH,UchidaH,KondoK,OgakiK.JElectrochemSoc,1988;135:5293IwaharaH,UchidaH,NaganoT,KoideK.DenkiKagaku,1989;57:9924MitsusiA,MiyamaM,YanagidaH.SolidStateIonics,1987,22:2135HibinoT,MizutaniK,YajiimaT.IwaharaH,SolidStateIonics,1992;57:3036IwaharaH.SolidStateIonics,1988;28-30:5737IwaharaH.ProceedingoftheInternationalSeminarSolidStateIonicsDevices,Singapore,1988:2898RobertCT.SolidstateIonics,1991;46:1119YajimaT,IwaharaH.SolidStateIonics,1991;47:11710ScherbanT,LeeWK,NowickAS.SolidStateIonics,1988;28-30:585
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[3] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[4] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[5] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[6] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[11] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[12] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[13] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[14] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[15] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
No Suggested Reading articles found!