Please wait a minute...
Acta Metall Sin  2026, Vol. 62 Issue (1): 217-234    DOI: 10.11900/0412.1961.2025.00222
Research paper Current Issue | Archive | Adv Search |
Process of Prefabricated Vortex Flow-Based Friction Stir Welding for Low Carbon Steel
WANG Qiyong1, LI Xiaobo1, LIU Xiaochao1,2(), WANG Xincheng1,2, ZHANG Tairui1, NI Zhonghua1,2, CHEN Biao3
1 School of Mechanical Engineering, Southeast University, Nanjing 211189, China
2 Advanced Ocean Institute of Southeast University Nantong, Nantong 226010, China
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

WANG Qiyong, LI Xiaobo, LIU Xiaochao, WANG Xincheng, ZHANG Tairui, NI Zhonghua, CHEN Biao. Process of Prefabricated Vortex Flow-Based Friction Stir Welding for Low Carbon Steel. Acta Metall Sin, 2026, 62(1): 217-234.

Download:  HTML  PDF(7144KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

At present, the demand for hard-to-weld steels, such as high-nitrogen stainless steel, oxide-dispersion-strengthened steel, and twinning-induced plasticity steel, in the high-end equipment manufacturing industry has gradually increased. Low-cost and reliable joining is a prerequisite for meeting the diverse application requirements of these steels. Conventional fusion welding of hard-to-weld steels often produces metallurgical defects, including pores and cracks. In contrast, friction stir welding (FSW), a solid-state process performed entirely below the material's melting point, effectively avoids such defects. Moreover, its combined thermal-mechanical action promotes the formation of high-performance joints. However, the high temperatures and contact stresses associated with FSW of hard-to-weld steels can lead to tool wear and fracture. To address this limitation, this study proposes a novel prefabricated vortex flow-based FSW (PF-VFSW) process. A systematic investigation was conducted using 3-mm-thick Q195 steel to evaluate the effects of holder material, rotational speed, welding speed, and tool tilt angle on the joint's macroscopic morphology, microstructure, and mechanical properties. For a WC-Co holder with 0° tilt, the optimal rotation and welding speeds were 500 r/min and 20 mm/min. However, kissing-bond defects were observed at the bottom of the joint, with oxide distribution and unbonded regions increasing with distance from the top of the joint. Using a W-Re holder with a 1° tilt and adjusted process parameters eliminated these defects, with the optimal rotation and welding speeds being 300 r/min and 20 mm/min. Severe plastic deformation in the stir zone induced dynamic recovery and both continuous and discontinuous dynamic recrystallization, reducing the recrystallization fraction compared to the base material. The proportion of low-angle grain boundaries increased markedly, accompanied by pronounced grain refinement. The minimum average grain size in the stir zone was 3.8 μm, representing an 80.51% reduction relative to the base material. The microhardnesses of joints produced with WC-Co and W-Re holders increased by 6.44% and 18.90%, respectively, compared to the base material. Tensile strength improved by 1.74% to 317.26 MPa and 5.91% to 330.25 MPa, respectively, achieving a joint efficiency of 100% in terms of tensile strength relative to the base material. These results demonstrate that PF-VFSW is an effective, low-cost method for producing high-quality joints in Q195 low-carbon steel.

Key words:  friction stir welding      Q195 steel      process parameter      microstructure      mechanical property      prefabricated vortex     
Received:  08 August 2025     
ZTFLH:  TG456  
Fund: National Natural Science Foundation of China(52275316);Fund of the State Key Laboratory of Solidification Processing in NPU(SKLSP202509);Zhishan Young Scholar Program of Southeast University(2242025RCB0002);Research Fund for Advanced Ocean Institute of Southeast University Nantong(KP202409)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00222     OR     https://www.ams.org.cn/EN/Y2026/V62/I1/217

Fig.1  Schematics of prefabricated vortex flow-based friction stir welding (PF-VFSW) process (a), sampling positions (b), and sample dimensions (c) (unit: mm. RS—retreading side, AS—advancing side, SZ—stirring zone)
AlloyCoefficient of frictionThermal conductivity / (W·m-1·K-1)Flow stress
WC-(13, 17)Co0.4[25]124-130[26]620-750 MPa at 900 oC[27]
W-25Re0.52[28]55-65[29]500-800 MPa at 1000 oC[29]
Table 1  Properties for WC-Co and W-Re alloys[25-29]

Sample

Holder material

Rotation

speed

r·min-1

Welding

speed

mm·min-1

Tilt angle

(°)

#1WC-Co300800
#2WC-Co300500
#3WC-Co350500
#4WC-Co500300
#5WC-Co500200
#6W-Re500200
#7W-Re500201
#8W-Re700201
#9W-Re300201
Table 2  Sample designations and corresponding holder materials and process parameters
Fig.2  Inverse pole figure (IPF) (a), {111} pole figure (b), and {111}112 texture standard pole figure (c) of annealed Q195 cold-rolled steel base metal (BM) (RD—rolling direction, TD—transverse direction, ND—normal direction)
Fig.3  Macroscopic morphologies of front (a-e) and back (a1-e1) sides of the weld in joints obtained using WC-Co holder under different rotation speeds and welding speeds (Black arrows in Figs.3a-c represent weld necking; F5, F10, F20, and F30 represent welding zones at welding speeds of 5, 10, 20, and 30 mm/min, respectively. The same below)
(a, a1) 300 r/min, 80 mm/min (b, b1) 300 r/min, 50 mm/min (c, c1) 350 r/min, 50 mm/min (d, d1) 500 r/min, 30 mm/min (e, e1) 500 r/min, 20 mm/min
Fig.4  Cross-sectional low (a-f) and high (g, h) magnified OM images of sample #4 (a-e, g) and sample #5 (f, h) under different welding speed intervals
(a) start position (b) 10 mm/min (c) 20 mm/min (d, g) 30 mm/min (e) end position (f, h) 20 mm/min
Fig.5  Low (a-c) and locally high (d-f) magnified SEM images of kissing bond regions at top (a, d), middle (b, e), and bottom (c, f) of the samples #5 (Dotted lines in Figs.5c and f represent boundaries of unbonded region)
Fig.6  Macroscopic morphologies of front (a, b) and back (a1, b1) sides of weld in joints, three dimensional morphologies of backside defects (c, d), and depth of defects along the direction shown in Fig.6c (e) and Fig.6d (f) of samples obtained using W-Re holder under different rotation speeds and tilt angles
(a, a1, c, e) 500 r/min, 20 mm/min, 0° (b, b1, d, f) 500 r/min, 20 mm/min, 1°
Fig.7  Macroscopic morphologies of front (a, b) and back (a1, b1) sides of the weld in joints obtained using W-Re holder under different parameters
(a, a1) 700 r/min, 20 mm/min, 1° (b, b1) 300 r/min, 20 mm/min, 1°
Fig.8  Cross-sectional low (a-d) and locally high (e, f) magnified OM images of joints obtained using W-Re holder under different parameters
(a) 500 r/min, 20 mm/min, 0° (b, e) 500 r/min, 20 mm/min, 1° (c, f) 700 r/min, 20 mm/min, 1° (d) 300 r/min, 20 mm/min, 1°
Fig.9  SEM images of joints at different locations obtained using WC-Co holder under optimal parameter (500 r/min, 20 mm/min, 0°) (a-c) and W-Re holder under optimal parameter (300 r/min, 20 mm/min, 1°) (d-f)
(a, d) BM (b, e) SZ (c, f) thermo-mechanically affected zone (TMAZ)
Fig.10  IPFs (a-h) and {101} and {111} pole figures (PFs) (i-l) of samples prepared by WC-Co (a-d, i, j) and W-Re (e-h, k, l) holders under corresponding optimal parameters (SZ-U—upper region of SZ, SZ-L—lower region of SZ, SPN—shear plane normal, SD—shear direction, HAZ—heat-affected zone, WD—weld direction)
(a, e) TMAZ on the AS (b, f, i, k) SZ-U (c, g, j, l) SZ-L (d, h) TMAZ on the RS
Sample

Grain size

μm

LAGB fraction

%

ρGND

m-2

BM19.55.696.70 × 1013
SZ-U-114.647.421.40 × 1014
SZ-L-112.021.921.09 × 1014
SZ-U-23.849.571.28 × 1014
SZ-L-213.326.458.48 × 1013
Table 3  Average grain sizes, low-angle grain boundary (LAGB) fraction, and geometrically necessary dislocations (ρGND) for different samples
Fig.11  Volume fractions of recrystallized grains (a) and kernel average misorientation (KAM) distributions (b) of BM and samples prepared by WC-Co and W-Re holders under correspon-ding optimal parameters
Fig.12  Microhardness contour maps (a, b) and distribu-tion profiles along line 1 and line 2 (c) of the cross-section of joints prepared by different holders under corresponding optimal parameters
(a) WC-Co holder (b) W-Re holder
Fig.13  Engineering stress-strain curves (a) and tensile properties (b) of BM samples and samples obtained using WC-Co and W-Re holders under optimal parameters (Insets in Fig.13a are macroscopic morphologies of the front (left) and back (right) sides of samples after tensile testing, with red arrows in the right image denoting the failure locations. UTS—ultimate tensile strength, EL—elongation)
SamplesUTS / MPaEL / %
BM312.31 ± 5.1457.91 ± 3.83
SZ-U-1457.93 ± 65.9622.32 ± 15.31
SZ-L-1311.70 ± 42.556.84 ± 3.49
SZ-U-2577.23 ± 42.4614.79 ± 3.53
SZ-L-2404.81 ± 18.4444.19 ± 3.48
Table 4  Tensile properties of BM mini samples and upper and lower parts of SZ of mini samples obtained using WC-Co and W-Re holders under optimal parameters
Fig.14  Low (a) and high (b, c) magnified SEM images showing typical fracture morphologies of samples obtained using WC-Co holder under optimal parameters (Insets in Figs.14b and c are corresponding high magnified views)
Fig.15  Low (a) and high (b) magnified SEM images showing typical fracture morphologies of samples obtained using W-Re holder under optimal parameters (Insets in Fig.15b is corresponding high magnified view. Dotted lines in Fig.15a represents boundaries of the central fracture region)
Fig.16  Schematics of PF-VFSW processes
(a) rotating stage (b) pressuring stage (c) welding stage
Fig.17  Schematics of fracture mechanisms of samples obtained using WC-Co (a) and W-Re (b) holders under optimal parameters (FBM—load on the BM region, FSZ—load on the SZ, SBM—cross-sectional area of the BM region, SSZ—cross-sectional area of the SZ, LBM—initial tensile test gauge length of the BM region, LBMʹ—critical gauge length of the BM region before fracture, LSZ—initial tensile test gauge length of the SZ, LSZʹ—critical gauge length of the SZ before fracture)
[1] Zhang H, Wang D, Xue P, et al. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Mater. Des., 2016, 110: 802
[2] Zheng Y, Wei L F, Yang C X, et al. Research progress and prospects of ODS steel welding technology [J]. Trans. China Weld. Inst., 2024, 45(12): 117
郑 勇, 魏连峰, 杨灿湘 等. ODS钢焊接技术研究进展与展望 [J]. 焊接学报, 2024, 45(12): 117
[3] Torganchuk V, Vysotskiy I, Malopheyev S, et al. Microstructure evolution and strengthening mechanisms in friction-stir welded TWIP steel [J]. Mater. Sci. Eng., 2019, A746: 248
[4] Xie X, Wan Y B, Zhong M, et al. Optimizing microstructures and mechanical properties of electro-gas welded metals for EH36 shipbuilding steel treated by CaF2-TiO2 fluxes [J]. Acta Metall. Sin., 2025, 61: 998
谢 旭, 万一博, 钟 明 等. CaF2-TiO2焊剂作用下EH36船板钢气电立焊焊缝金属组织优化及力学性能调控 [J]. 金属学报, 2025, 61: 998
[5] Zhang H, Lin S B, Wu L, et al. Current progress and prospect of friction stir welding [J]. Trans. China Weld. Inst., 2003, 24(3): 91
张 华, 林三宝, 吴 林 等. 搅拌摩擦焊研究进展及前景展望 [J]. 焊接学报, 2003, 24(3): 91
[6] Dawson H, Serrano M, Hernandez R, et al. Mechanical properties and fracture behaviour of ODS steel friction stir welds at variable temperatures [J]. Mater. Sci. Eng., 2017, A693: 84
[7] Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng., 2005, R50: 1
[8] Miyano Y, Fujii H, Sun Y F, et al. Mechanical properties of friction stir butt welds of high nitrogen-containing austenitic stainless steel [J]. Mater. Sci. Eng., 2011, A528: 2917
[9] Li H B, Jiang Z H, Feng H, et al. Microstructure, mechanical and corrosion properties of friction stir welded high nitrogen nickel-free austenitic stainless steel [J]. Mater. Des., 2015, 84: 291
[10] Yabuuchi K, Tsuda N, Kimura A, et al. Effects of tool rotation speed on the mechanical properties and microstructure of friction stir welded ODS steel [J]. Mater. Sci. Eng., 2014, A595: 291
[11] Dawson H, Serrano M, Cater S, et al. Impact of friction stir welding on the microstructure of ODS steel [J]. J. Nucl. Mater., 2017, 486: 129
[12] Lee S J, Sun Y F, Fujii H. Stacking-fault energy, mechanical twinning and strain hardening of Fe-18Mn-0.6C-(0, 1.5)Al twinning-induced plasticity steels during friction stir welding [J]. Acta Mater., 2018, 148: 235
[13] Ding Y X, Wang Y Q, Guo S, et al. Effect of rapid cooling on microstructure and mechanical properties in friction stir welded twin-induced plasticity steel [J]. Met. Mater. Int., 2025, 31: 1392
[14] Liu F C, Hovanski Y, Miles M P, et al. A review of friction stir welding of steels: Tool, material flow, microstructure, and properties [J]. J. Mater. Sci. Technol., 2018, 34: 39
[15] Li Y J, Fu R D. Friction stir welding and processing of steels [J]. J. Mech. Eng., 2015, 51(22): 1
李艺君, 付瑞东. 钢搅拌摩擦焊接及加工研究进展 [J]. 机械工程学报, 2015, 51(22): 1
[16] Tiwari A, Pankaj P, Biswas P, et al. Characterization of ultrafine grain tungsten carbide tool and its wear investigation in friction stir welding of HSLA steel [J]. Tribol. Int., 2023, 186: 108579
[17] Zhou L, Zhang R X, Shu F Y, et al. Microstructure and mechanical properties of friction stir welded joint of Q235 steel [J]. Trans. China Weld. Inst., 2019, 40(3): 80
周 利, 张仁晓, 舒凤远 等. Q235钢搅拌摩擦焊接头微观组织与力学性能分析 [J]. 焊接学报, 2019, 40(3): 80
[18] Kong J, Chen C, Wang K H, et al. Progress in research of tool materials for friction stir welding of high-strength metals [J]. Weld. Joining, 2018, (10): 9
孔 见, 陈 橙, 王克鸿 等. 钛和钢等高强度合金搅拌摩擦焊搅拌头用材的研究进展 [J]. 焊接, 2018, (10): 9
[19] Zhu X X, Lv W Y, Cui S Q, et al. A comparative study on the microstructure and mechanical properties of friction stir welded martensitic ultra-high-strength steel joints using PCBN and WC-Co tools [J]. Arch. Civ. Mech. Eng., 2025, 25: 191
[20] Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
薛 鹏, 张星星, 吴利辉 等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222
[21] Liu X C, Zhen Y Q, Shen Z K, et al. A modified friction stir welding process based on vortex material flow [J]. Chin. J. Mech. Eng., 2020, 33: 90
[22] Li W T, Zhang T R, Liu X C, et al. Lap joining of Ti6Al4V titanium alloy by vortex flow-based friction stir welding [J]. Mater. Charact., 2024, 218: 114462
[23] Liu X C, Zhang P Y, Li W T, et al. Microstructure and mechanical properties of TC4 titanium alloy joint fabricated by vortex flow-based friction stir welding [J]. Chin. J. Mech. Eng., 2024, 37: 159
[24] Li W T, Wang X C, Liu X C, et al. Elucidation of microstructure, mechanical properties and wear behavior in double-sided vortex flow-based friction stir welds of medium-thick titanium alloy plates [J]. J. Mater. Process. Technol., 2025, 342: 118951
[25] Khuengpukheiw R, Wisitsoraat A, Saikaew C. Wear behaviors of HVOF-sprayed NiSiCrFeB, WC-Co/NiSiCrFeB and WC-Co coatings evaluated using a pin-on-disc tester with C45 steel pins [J]. Wear, 2021, 484-485: 203699
[26] Wang H T, Webb T, Bitler J W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 170
[27] Teppernegg T, Klünsner T, Kremsner C, et al. High temperature mechanical properties of WC-Co hard metals [J]. Int. J. Refract. Met. Hard Mater., 2016, 56: 139
[28] Iqbal Z, Merah N, Nouari S, et al. Investigation of wear characteristics of spark plasma sintered W-25wt%Re alloy and W-25wt%Re-3.2wt%HfC composite [J]. Tribol. Int., 2017, 116: 129
[29] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools [J]. Sci. Technol. Weld. Joining, 2011, 16: 325
[30] Ray R K, Jonas J J, Hook R E. Cold rolling and annealing textures in low carbon and extra low carbon steels [J]. Int. Mater. Rev., 1994, 39: 129
[31] Yang P, Li Z C, Mao W M, et al. Formation of the {111}112 annealing texture in steels [J]. Trans. Mater. Heat Treat., 2009, 30(3): 46
杨 平, 李志超, 毛卫民 等. 钢中{111}112再结晶织构的形成 [J]. 材料热处理学报, 2009, 30(3): 46
[32] Emani S V, dos Santos A F C R, Shaw L L, et al. Investigation of microstructure and mechanical properties at low and high temperatures of WC-6 wt%Co [J]. Int. J. Refract. Met. Hard Mater., 2016, 58: 172
[33] Liu H H, Li J X, Huang H, et al. Elucidation of interface joining mechanism during pressure-controlled Joule-heat forge welding of high-carbon steel via experimental and numerical approaches [J]. J. Mater. Process. Technol., 2025, 339: 118824
[34] Sato Y S, Takauchi H, Park S H C, et al. Characteristics of the kissing-bond in friction stir welded Al alloy 1050 [J]. Mater. Sci. Eng., 2005, A405 : 333
[35] Choi D H, Lee C Y, Ahn B W, et al. Frictional wear evaluation of WC-Co alloy tool in friction stir spot welding of low carbon steel plates [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 931
[36] Dai Q L, Wang X Y, Hou Z G, et al. Microcavities accompanying a zigzag line in friction stir welded A6082-T6 alloy joint [J]. Sci. Technol. Weld. Joining, 2015, 20: 68
[37] Tang T X, Shi Q Y, Zhou J, et al. Kissing bond defects in inertia friction welds of IN718 alloys: Experiment and prediction [J]. J. Mater. Process. Technol., 2025, 338: 118786
[38] Zhou N, Song D F, Qi W J, et al. Influence of the kissing bond on the mechanical properties and fracture behaviour of AA5083-H112 friction stir welds [J]. Mater. Sci. Eng., 2018, A719: 12
[39] Tang W S, Yang X Q, Li S L, et al. Zigzag line defect in friction stir butt-weld of ferritic stainless steel [J]. Mater. Lett., 2021, 288: 129361
[40] Fonda R W, Knipling K E. Texture development in friction stir welds [J]. Sci. Technol. Weld. Joining, 2011, 16: 288
[41] Liu X C, Sun Y F, Nagira T, et al. Strain rate dependent micro-texture evolution in friction stir welding of copper [J]. Materialia, 2019, 6: 100302
[42] Liu X C, Sun Y F, Nagira T, et al. Investigation of temperature dependent microstructure evolution of pure iron during friction stir welding using liquid CO2 rapid cooling [J]. Mater. Charact., 2018, 137: 24
[43] Choi H N, Fujii H, Lee S J. Dynamic recrystallization, textural evolution, and strengthening mechanism of medium-Mn steel subjected to friction-stir welding (FSW) [J]. Mater. Charact., 2025, 227: 115307
[44] Liu G L, Liu K, Zhang M H, et al. Effect of cold rolling reduction ratio on microstructure and mechanical properties of Fe-10Mn-4Al-0.4C steel containing δ ferrite [J]. Mater. Sci. Eng., 2023, A867: 144715
[45] Humphreys J, Rohrer G S, Rollett A. Recrystallization and Related Annealing Phenomena [M]. 3rd Ed., Amsterdam: Elsevier, 2017: 215
[46] Zhong Q P, Zhao Z H. Fractography [M]. Beijing: Higher Education Press, 2006: 149
钟群鹏, 赵子华. 断口学 [M]. 北京: 高等教育出版社, 2006: 149
[47] Wang H D, Wang K S, Wang W, et al. Microstructure and mechanical properties of low-carbon Q235 steel welded using friction stir welding [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 1556
[48] Liu X C, Sun Z. Numerical simulation of vortex-friction stir welding based on internal friction between identical materials [J]. Int. J. Heat Mass Transfer, 2022, 185: 122418
[49] Paul S K, Raj A, Biswas P, et al. Tensile flow behavior of ultra low carbon, low carbon and micro alloyed steel sheets for auto application under low to intermediate strain rate [J]. Mater. Des., 2014, 57: 211
[1] LU Shanping, SUN Jian. Research Progress on Microstructural Design and Strengthening-Toughening Mechanisms of Weld Metal in High-Strength Steels[J]. 金属学报, 2026, 62(1): 1-16.
[2] MA Chengyong, HOU Xuru, ZHAO Lin, KAN Chengling, CAO Yang, PENG Yun, TIAN Zhiling. Research Progress on High-Strength Al-Mg-Sc Alloys Fabricated by Wire Arc Additive Manufacturing: Metallurgical Defects, Microstructure, and Performance[J]. 金属学报, 2026, 62(1): 29-46.
[3] YIN Jialin, SHI Lei, WU Chuansong. Effect of Ultrasonic Vibration on Microstructure Evolution at the Mg/Al Dissimilar Alloy Friction Stir Welded Lap Joint Interface[J]. 金属学报, 2026, 62(1): 133-147.
[4] HAN Honghua, SHI Qingyu, YANG Chengle, KONG Deshuai, CHEN Gaoqiang. Coupled Thermal-Mechanical-Fluid Simulation and Material Migration Trajectory Analysis for Friction Stir Welding of Aluminum Alloy[J]. 金属学报, 2026, 62(1): 148-158.
[5] LI Hong, JIANG Yuqing, CAO Yupeng, WANG Jiayou, LIU Shubin. Weld Formation Characteristics and the Evolution Mechanisms of Joint Microstructure and Mechanical Properties for Rotating/Swing Arc Narrow Gap MAG Welding Assisted by Cold Wire[J]. 金属学报, 2026, 62(1): 235-252.
[6] ZHANG Tianyu, ZHANG Peng, XIAO Na, WANG Xiaohai, LIU Guoqiang, YANG Zhigang, ZHANG Chi. Effect of Austenitizing Temperature on the Microstructure and Mechanical Properties of a 2 GPa Ultra-High Strength Steel[J]. 金属学报, 2025, 61(9): 1353-1363.
[7] WANG Hongying, YAO Zhihao, LI Dayu, GUO Jing, YAO Kaijun, DONG Jianxin. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. 金属学报, 2025, 61(9): 1364-1374.
[8] WU Zhiyong, SHAO Huifan, CAI Changchun, ZENG Min, WANG Zhenjun, WANG Yanli, CHEN Lei, XIONG Bowen. Tensile and Fracture Behaviors of Stitched Twill Carbon Fabric Structure Reinforced Aluminum Matrix Composites at Elevated Temperature[J]. 金属学报, 2025, 61(9): 1387-1402.
[9] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[10] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[11] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, GU Jinbo. Influence of Spray Forming Process on Carbide Characteristics and Mechanical Properties of M3 High-Speed Steel[J]. 金属学报, 2025, 61(8): 1229-1244.
[12] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[13] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[14] XIE Ang, CHEN Shenghu, JIANG Haichang, RONG Lijian. Effects of Nb Content and Homogenization Treatment on the Microstructure and Mechanical Properties of Cast Austenitic Stainless Steel[J]. 金属学报, 2025, 61(7): 1035-1048.
[15] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
No Suggested Reading articles found!