|
|
|
| Texture of Ti2AlNb Sheet and Its Effect on Anisotropy of Tensile Properties |
WANG Ziyu1,2, CHEN Zhiyong1,2( ), WANG Xin3, WANG Qingjiang1,2( ) |
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 Baoji Titanium Industry Co. Ltd., Baoji 721000, China |
|
Cite this article:
WANG Ziyu, CHEN Zhiyong, WANG Xin, WANG Qingjiang. Texture of Ti2AlNb Sheet and Its Effect on Anisotropy of Tensile Properties. Acta Metall Sin, 2025, 61(11): 1625-1637.
|
|
|
Abstract Ti2AlNb alloys are a type of lightweight material that has excellent high-temperature performance exceeding that of titanium alloys. Manufacturers often use rolling as a major method to obtain a Ti2AlNb sheet. After rolling, the mechanical properties of the resulting Ti2AlNb sheets exhibit evident anisotropy, but the anisotropic mechanism remains unclear. In view of the anisotropic tensile properties of Ti2AlNb sheets, this study investigates the microstructure, texture, and tensile properties of Ti2AlNb sheets, as well as to explore the main factors affecting the anisotropy of sheet tensile properties. Results indicate that the microstructure of Ti2AlNb alloy sheets consists of α2, B2, and O phases, with each phase exhibiting a strong texture. The B2 phase forms a slightly rotated cubic texture, whereas the O phase develops a distinct <100>//ND (normal direction) phase transformation texture, which is related to the orientation of the α2 and B2 phases. The α2 phase exhibits a strong rolling thermal deformation-induced {110}<uvtw> texture. The tensile properties of the sheets at room temperature (24 oC) and 650 oC exhibit remarkable anisotropy, with the transverse tensile strength being higher than the longitudinal strength. However, the longitudinal elongation is higher than the transverse elongation. This result is attributed to the near-T-type strong texture of the α2 phase and <100>//ND phase transformation texture of the O phase, which make the respective prismatic <a> slip more difficult to activate in the transverse direction of the sheets. As the tensile testing temperature increases to 700 oC, the activation of pyramidal <c + a> slip in the α2 and O phases markedly reduces the anisotropy of the tensile properties.
|
|
Received: 08 March 2024
|
|
|
| [1] |
Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
|
|
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
|
| [2] |
Wei B M, Tai L M. Progress in Ti-Al-Sn-Zr-Mo-Si high temperature titanium alloy [J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 424
|
|
魏宝敏, 台立民. Ti-Al-Sn-Zr-Mo-Si系高温钛合金的研究进展 [J]. 特种铸造及有色合金, 2013, 33: 424
|
| [3] |
Wu Y, Yang D Z, Song G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy [J]. Intermetallics, 2000, 8: 629
|
| [4] |
Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
|
| [5] |
Guo H P, Zeng Y S, Li Z Q. Research progress of superplasticity of intermetallic Ti2AlNb orthorhombic alloys [J]. Aeronaut. Manuf. Technol., 2009(10): 64
|
|
郭和平, 曾元松, 李志强. O相合金Ti2AlNb的超塑性研究进展 [J]. 航空制造技术, 2009(10): 64
|
| [6] |
Du G, Cui L L, Lei Q, et al. Research and development of orthorhombic titanium aluminide [J]. Mater. China, 2018, 37: 68
|
|
杜 刚, 崔林林, 雷 强 等. O相合金Ti2AlNb的研究进展 [J]. 中国材料进展, 2018, 37: 68
|
| [7] |
Yang M C, Lin X, Xu X J, et al. Microstructure and phase evolution in Ti60-Ti2AlNb gradient material prepared by laser solid forming [J]. Acta Metall. Sin., 2009, 45: 729
|
|
杨模聪, 林 鑫, 许小静 等. 激光立体成形Ti60-Ti2AlNb梯度材料的组织与相演变 [J]. 金属学报, 2009, 45: 729
|
| [8] |
Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286
|
|
沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286
|
| [9] |
Liu J T, Lin X, Lü X W, et al. Research on laser solid forming of a functionally gradient Ti-Ti2AlNb alloy [J]. Acta Metall. Sin., 2008, 44: 1006
|
|
刘建涛, 林 鑫, 吕晓卫 等. Ti-Ti2AlNb功能梯度材料的激光立体成形研究 [J]. 金属学报, 2008, 44: 1006
|
| [10] |
Wu Y, Kou H C, Wu Z H, et al. Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression [J]. J. Alloys Compd., 2018, 749: 844
|
| [11] |
Dey S R, Suwas S, Fundenberger J J, et al. Evolution of hot rolling texture in β (B2)-phase of a two-phase (O + B2) titanium-aluminide alloy [J]. Mater. Sci. Eng., 2008, A483-484: 551
|
| [12] |
Semiatin S L, Smith P R. Microstructural evolution during rolling of Ti-22Al-23Nb sheet [J]. Mater. Sci. Eng., 1995, A202: 26
|
| [13] |
Qu S J, Feng A H, Shagiev M R, et al. Superplastic behavior of the fine-grained Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy [J]. Lett. Mater., 2018, 8: 567
|
| [14] |
Zuo B. Study on high temperature deformation and microstructure evolution of Ti2AlNb alloy [D]. Hefei: Hefei University of Technology, 2018
|
|
左 标. Ti2AlNb基合金高温变形行为及组织演变研究 [D]. 合肥: 合肥工业大学, 2018
|
| [15] |
Suwas S, Ray R K. Effect of rolling on textures of primary and secondary α2 produced by thermomechanical processing of the intermetallic alloy Ti-24Al-11Nb [J]. Scr. Mater., 2001, 44: 275
|
| [16] |
Suwas S, Ray R K. Texture evolution during β→O→α2 and β→α2 phase transformations in a Ti3Al-Nb alloy [J]. Mater. Sci. Eng., 2005, A391: 249
|
| [17] |
Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013
|
|
李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
|
| [18] |
Nicolaou P D, Semiatin S L. An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy [J]. Metall. Mater. Trans., 1997, 28A: 885
|
| [19] |
Rollett A D, Smith P R, James M R. Texture and anisotropy of Ti-22Al-23Nb foil [J]. Mater. Sci. Eng., 1998, A257: 77
|
| [20] |
Ju B Y, Zhang N B, Deng T Q, et al. Anisotropic microstructure and mechanical properties of as-forged (Ti, Nb)B/Ti2AlNb composites [J]. Mater. Sci. Eng., 2023, A872: 144935
|
| [21] |
Zhang P H, Zeng W D, Zhang F, et al. In-situ investigation of tensile anisotropy mechanism in an advanced Ti2AlNb-based alloy associated with CRSS ratio and damage model [J]. Mater. Sci. Eng., 2024, A890: 145894
|
| [22] |
Rollett A D, Smith P R, James M R. Texture and anisotropy of Ti-22Al-23Nb foil [J]. Mater. Sci. Eng., 1998, A257: 77
|
| [23] |
Wang W. Research on three typical microstructures and mechanical properties of Ti-22Al-25Nb alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
|
|
王 伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究 [D]. 西安: 西北工业大学, 2015
|
| [24] |
Zhao H Z. Study on microstructure and property optimization and environmental adaptability of TAN-2 alloy [D]. Hefei: University of Technology and Science of China, 2018
|
|
赵洪泽. TAN-2合金的组织与性能优化和环境适应性研究 [D]. 合肥: 中国科学技术大学, 2018
|
| [25] |
Ke Y B, Duan H P, Liang X B, et al. Microstructure of Ti2AlNb joint produced by electron beam welding [J] Aerosp. Mater. Technol. 2009, 39(6): 62
|
|
柯于斌, 段辉平, 梁晓波 等. Ti2AlNb基合金电子束焊接头的显微组织 [J]. 宇航材料工艺, 2009, 39(6): 62
|
| [26] |
Yang S H. Research on meso-mechanical properties and fatigue strength of Ti2AlNb alloy electron beam welded joints [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
|
|
杨四辉. Ti2AlNb合金电子束焊接头细观力学性能与疲劳强度研究 [D]. 南京: 南京航空航天大学, 2016
|
| [27] |
Yin J M, Lu B, Li Y L, et al. Electron beam welding of Ti2AlNb based alloy sheet [J]. Chin. J. Nonferrous Met., 2010, 20: 325
|
|
尹建明, 卢 斌, 李玉兰 等. Ti2AlNb合金板材的电子束焊接 [J]. 中国有色金属学报, 2010, 20: 325
|
| [28] |
Zhu R C, Xie M R, Zhang Y K, et al. Effects of welding parameters on mechanical properties of Ti2AlNb based alloy in electron beam welding [J]. Aerosp. Manuf. Technol., 2009(5): 28
|
|
朱瑞灿, 谢美蓉, 张益坤 等. 焊接规范对Ti2AlNb基合金电子束焊接接头性能的影响 [J]. 航天制造技术, 2009(5): 28
|
| [29] |
Tang T T. Research on interrfacial effect induced by phase transformation during superplastic diffusion bonding between Ti2AlNb Ti alloys [D]. Taiyuan: Taiyuan University of Technology, 2017
|
|
唐婷婷. 相变在Ti2AlNb与Ti合金超塑性扩散连接中产生的界面效应 [D]. 太原: 太原理工大学, 2017
|
| [30] |
Wang X, Lu B, Wang J H, et al. Superplastic deformation behavior of annealed Ti2AlNb alloy sheet [J]. Chin. J. Nonferrous Met., 2010, 20: 289
|
|
王 新, 卢 斌, 王娟华 等. 退火态Ti2AlNb合金板材的超塑性变形行为 [J]. 中国有色金属学报, 2010, 20: 289
|
| [31] |
Cai X Q. Study on processing and mechanical properties of diffusion bonded joints of Ti2AlNb alloy [D]. Tianjin: Tianjin University, 2017
|
|
蔡小强. Ti2AlNb合金扩散连接工艺及性能研究 [D]. 天津: 天津大学, 2017
|
| [32] |
Lu Z G, Wu J, Xu L, et al. Ring rolling forming and properties of Ti2AlNb special shaped ring prepared by powder metallurgy [J]. Acta Metall. Sin., 2019, 55: 729
|
|
卢正冠, 吴 杰, 徐 磊 等. Ti2AlNb异形粉末环件的轧制成形与性能研究 [J]. 金属学报, 2019, 55: 729
|
| [33] |
Xue K M, Zhang Y Q, Meng M, et al. Fracture behavior of B2 phase matrix of Ti2AlNb-based alloy with microcracks of different orientations [J]. Eng. Fract. Mech., 2023, 279: 109050
|
| [34] |
Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
|
|
骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
|
| [35] |
Goyal K, Sardana N. Mechanical properties of the Ti2AlNb intermetallic: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1839
|
| [36] |
Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metall. Trans., 1981, 12A: 409
|
| [37] |
Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
|
| [38] |
Huang Y. Study on hot deformation behavior and processing map of Ti2AlNb-based alloy [D]. Nanchang: Nanchang Hangkong University, 2015
|
|
黄 赟. Ti2AlNb基合金的热变形行为及加工图研究 [D]. 南昌: 南昌航空大学, 2015
|
| [39] |
Banerjee D. Deformation of the O and α2 phases in the Ti-Al-Nb system [J]. Philos. Mag., 1995, 72A: 1559
|
| [40] |
Roy S, Suwas S. Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B Alloy: Part I. Hot rolling in (α + β) phase field [J]. Metall. Mater. Trans., 2013, 44A: 3303
|
| [41] |
Cheng C. Study on microstructure and superplasticity in TA32 titanium alloy plate [D]. Hefei: University of Science and Technology of China, 2021
|
|
程 超. TA32钛合金板材微观组织及超塑性研究 [D]. 合肥: 中国科学技术大学, 2021
|
| [42] |
Zhao W J, Tang A, Lin Q Q, et al. Simulation of plastic deformation behaviors of Ti3Al single crystal with crystal plasticity finite element method [J]. Rare Met. Mater. Eng. 2018, 47: 1753
|
|
赵文娟, 唐 安, 林启权 等. Ti3Al单晶塑性变形行为的晶体塑性有限元模拟 [J]. 稀有金属材料与工程, 2018, 47: 1753
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|