Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (11): 1625-1637    DOI: 10.11900/0412.1961.2024.00074
Research paper Current Issue | Archive | Adv Search |
Texture of Ti2AlNb Sheet and Its Effect on Anisotropy of Tensile Properties
WANG Ziyu1,2, CHEN Zhiyong1,2(), WANG Xin3, WANG Qingjiang1,2()
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Baoji Titanium Industry Co. Ltd., Baoji 721000, China
Cite this article: 

WANG Ziyu, CHEN Zhiyong, WANG Xin, WANG Qingjiang. Texture of Ti2AlNb Sheet and Its Effect on Anisotropy of Tensile Properties. Acta Metall Sin, 2025, 61(11): 1625-1637.

Download:  HTML  PDF(4415KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti2AlNb alloys are a type of lightweight material that has excellent high-temperature performance exceeding that of titanium alloys. Manufacturers often use rolling as a major method to obtain a Ti2AlNb sheet. After rolling, the mechanical properties of the resulting Ti2AlNb sheets exhibit evident anisotropy, but the anisotropic mechanism remains unclear. In view of the anisotropic tensile properties of Ti2AlNb sheets, this study investigates the microstructure, texture, and tensile properties of Ti2AlNb sheets, as well as to explore the main factors affecting the anisotropy of sheet tensile properties. Results indicate that the microstructure of Ti2AlNb alloy sheets consists of α2, B2, and O phases, with each phase exhibiting a strong texture. The B2 phase forms a slightly rotated cubic texture, whereas the O phase develops a distinct <100>//ND (normal direction) phase transformation texture, which is related to the orientation of the α2 and B2 phases. The α2 phase exhibits a strong rolling thermal deformation-induced {112¯0}<uvtw> texture. The tensile properties of the sheets at room temperature (24 oC) and 650 oC exhibit remarkable anisotropy, with the transverse tensile strength being higher than the longitudinal strength. However, the longitudinal elongation is higher than the transverse elongation. This result is attributed to the near-T-type strong texture of the α2 phase and <100>//ND phase transformation texture of the O phase, which make the respective prismatic <a> slip more difficult to activate in the transverse direction of the sheets. As the tensile testing temperature increases to 700 oC, the activation of pyramidal <c + a> slip in the α2 and O phases markedly reduces the anisotropy of the tensile properties.

Key words:  Ti2AlNb alloy sheet      microstructure      texture      tensile property      anisotropy     
Received:  08 March 2024     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00074     OR     https://www.ams.org.cn/EN/Y2025/V61/I11/1625

Fig.1  Schematic of cyclic heat treatment (AC—air cooling, FC—furnace cooling)
Fig.2  Dimension (unit: mm) (a) and schematic (b) of tensile specimen (ND—normal direction, RD—rolling direction, TD—tranverse direction)
Fig.3  XRD spectrum of the as-received Ti2AlNb sheet
Fig.4  OM (a) and SEM (b) images of RD-ND plane of Ti2AlNb sheet
Fig.5  OM (a) and SEM (b) images of TD-ND plane of Ti2AlNb sheet
Fig.6  Texture of B2 phase in Ti2AlNb sheet (Color bar: pole density, the same below)
(a) pole figures (b) inverse pole figure (IPF) coloring map (c) IPFs
Fig.7  Texture of α2 phase in Ti2AlNb sheet
(a) pole figures (b) IPF coloring map (c) IPFs
Fig.8  Texture of O phase in Ti2AlNb sheet
(a) pole figures (b) IPF coloring map (c) IPFs

Temperature

oC

Load

direction

Rp0.2

MPa

Rm

MPa

A

%

24TD116011982.0
117411905.5
Avg.116711943.75
RD88398312.0
8899788.5
Avg.886980.510.25
650TD65790311.5
67391611.5
Avg.665909.511.5
RD55268424.5
55067620.0
Avg.55168022.25
700TD54481817.5
54381317.5
Avg.543.5815.517.5
RD44263518.0
44463420.0
Avg.443634.519.0
Table 1  Tensile properties of Ti2AlNb sheet at room temperature and high temperatures
Fig.9  Engineering stress-strain (σ-ε) curves of longitudinal and transverse specimens tensiled at 650 oC
Fig.10  Schmidt factor (SF) distributions of slips in B2 phase load along the RD and TD
(a) {110}<111> (b) {112}<111>
Fig.11  SF distributions of slips in α2 phase load along the RD and TD
(a) basal <a> slip
(b) prismatic <a> slip
(c) pyramidal <c + a> slip
Fig.12  SF distributions of basal <a> slip in Ophase load along the RD and TD
(a) {001}<110> (b) {001}<100>
Fig.13  SF distributions of prismatic <a> slip in O phase load along the RD and TD
(a) {010}<100> (b) {110}<11¯0>
Fig.14  SF distributions of prismatic <a> slip in O phase load along the RD and TD
(a) {131}<114¯> (b) {201}<102¯> (c) {221}<102¯> (d) {221}<114¯>
Fig.15  Distributions of SFs of α2 phase prismatic <a> slip system on {0001} pole figure
(a) load along RD direction (b) load along TD direction
Fig.16  Distributions of α2 phases with different texture types (Insets show the 3D orientations at positions A, B, and C of α2 phases)
(a) near T-type texture (b) near R-type texture
Fig.17  SF distributions of α2 phase prismatic <a> slip system with different types of textures load along RD and TD
(a) near T-type texture
(b) near R-type texture
Fig.18  XRD spectrum of the unrolled Ti2AlNb alloy slab
Fig.19  Pole figures of phases in unrolled alloy after heat cycle treatment
(a) B2 phase (b) α2 phase (c) O phase
[1] Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
[2] Wei B M, Tai L M. Progress in Ti-Al-Sn-Zr-Mo-Si high temperature titanium alloy [J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 424
魏宝敏, 台立民. Ti-Al-Sn-Zr-Mo-Si系高温钛合金的研究进展 [J]. 特种铸造及有色合金, 2013, 33: 424
[3] Wu Y, Yang D Z, Song G M. The formation mechanism of the O phase in a Ti3Al-Nb alloy [J]. Intermetallics, 2000, 8: 629
[4] Banerjee D, Gogia A K, Nandi T K, et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy [J]. Acta Metall., 1988, 36: 871
[5] Guo H P, Zeng Y S, Li Z Q. Research progress of superplasticity of intermetallic Ti2AlNb orthorhombic alloys [J]. Aeronaut. Manuf. Technol., 2009(10): 64
郭和平, 曾元松, 李志强. O相合金Ti2AlNb的超塑性研究进展 [J]. 航空制造技术, 2009(10): 64
[6] Du G, Cui L L, Lei Q, et al. Research and development of orthorhombic titanium aluminide [J]. Mater. China, 2018, 37: 68
杜 刚, 崔林林, 雷 强 等. O相合金Ti2AlNb的研究进展 [J]. 中国材料进展, 2018, 37: 68
[7] Yang M C, Lin X, Xu X J, et al. Microstructure and phase evolution in Ti60-Ti2AlNb gradient material prepared by laser solid forming [J]. Acta Metall. Sin., 2009, 45: 729
杨模聪, 林 鑫, 许小静 等. 激光立体成形Ti60-Ti2AlNb梯度材料的组织与相演变 [J]. 金属学报, 2009, 45: 729
[8] Shen J, Feng A H. Recent advances on microstructural controlling and hot forming of Ti2AlNb-based alloys [J]. Acta Metall. Sin., 2013, 49: 1286
沈 军, 冯艾寒. Ti2AlNb基合金微观组织调制及热成形研究进展 [J]. 金属学报, 2013, 49: 1286
[9] Liu J T, Lin X, Lü X W, et al. Research on laser solid forming of a functionally gradient Ti-Ti2AlNb alloy [J]. Acta Metall. Sin., 2008, 44: 1006
刘建涛, 林 鑫, 吕晓卫 等. Ti-Ti2AlNb功能梯度材料的激光立体成形研究 [J]. 金属学报, 2008, 44: 1006
[10] Wu Y, Kou H C, Wu Z H, et al. Dynamic recrystallization and texture evolution of Ti-22Al-25Nb alloy during plane-strain compression [J]. J. Alloys Compd., 2018, 749: 844
[11] Dey S R, Suwas S, Fundenberger J J, et al. Evolution of hot rolling texture in β (B2)-phase of a two-phase (O + B2) titanium-aluminide alloy [J]. Mater. Sci. Eng., 2008, A483-484: 551
[12] Semiatin S L, Smith P R. Microstructural evolution during rolling of Ti-22Al-23Nb sheet [J]. Mater. Sci. Eng., 1995, A202: 26
[13] Qu S J, Feng A H, Shagiev M R, et al. Superplastic behavior of the fine-grained Ti-21Al-18Nb-1Mo-2V-0.3Si intermetallic alloy [J]. Lett. Mater., 2018, 8: 567
[14] Zuo B. Study on high temperature deformation and microstructure evolution of Ti2AlNb alloy [D]. Hefei: Hefei University of Technology, 2018
左 标. Ti2AlNb基合金高温变形行为及组织演变研究 [D]. 合肥: 合肥工业大学, 2018
[15] Suwas S, Ray R K. Effect of rolling on textures of primary and secondary α2 produced by thermomechanical processing of the intermetallic alloy Ti-24Al-11Nb [J]. Scr. Mater., 2001, 44: 275
[16] Suwas S, Ray R K. Texture evolution during β→O→α2 and βα2 phase transformations in a Ti3Al-Nb alloy [J]. Mater. Sci. Eng., 2005, A391: 249
[17] Li S Y. Phase transformation and superplasticity deformation mechanism in Ti2AlNb-based alloys [D]. Harbin: Harbin Institute of Technology, 2013
李少雨. Ti2AlNb基合金相变及超塑性变形机理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2013
[18] Nicolaou P D, Semiatin S L. An investigation of the effect of texture on the high-temperature flow behavior of an orthorhombic titanium aluminide alloy [J]. Metall. Mater. Trans., 1997, 28A: 885
[19] Rollett A D, Smith P R, James M R. Texture and anisotropy of Ti-22Al-23Nb foil [J]. Mater. Sci. Eng., 1998, A257: 77
[20] Ju B Y, Zhang N B, Deng T Q, et al. Anisotropic microstructure and mechanical properties of as-forged (Ti, Nb)B/Ti2AlNb composites [J]. Mater. Sci. Eng., 2023, A872: 144935
[21] Zhang P H, Zeng W D, Zhang F, et al. In-situ investigation of tensile anisotropy mechanism in an advanced Ti2AlNb-based alloy associated with CRSS ratio and damage model [J]. Mater. Sci. Eng., 2024, A890: 145894
[22] Rollett A D, Smith P R, James M R. Texture and anisotropy of Ti-22Al-23Nb foil [J]. Mater. Sci. Eng., 1998, A257: 77
[23] Wang W. Research on three typical microstructures and mechanical properties of Ti-22Al-25Nb alloy [D]. Xi'an: Northwestern Polytechnical University, 2015
王 伟. 基于三种典型显微组织的Ti-22Al-25Nb合金力学性能研究 [D]. 西安: 西北工业大学, 2015
[24] Zhao H Z. Study on microstructure and property optimization and environmental adaptability of TAN-2 alloy [D]. Hefei: University of Technology and Science of China, 2018
赵洪泽. TAN-2合金的组织与性能优化和环境适应性研究 [D]. 合肥: 中国科学技术大学, 2018
[25] Ke Y B, Duan H P, Liang X B, et al. Microstructure of Ti2AlNb joint produced by electron beam welding [J] Aerosp. Mater. Technol. 2009, 39(6): 62
柯于斌, 段辉平, 梁晓波 等. Ti2AlNb基合金电子束焊接头的显微组织 [J]. 宇航材料工艺, 2009, 39(6): 62
[26] Yang S H. Research on meso-mechanical properties and fatigue strength of Ti2AlNb alloy electron beam welded joints [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
杨四辉. Ti2AlNb合金电子束焊接头细观力学性能与疲劳强度研究 [D]. 南京: 南京航空航天大学, 2016
[27] Yin J M, Lu B, Li Y L, et al. Electron beam welding of Ti2AlNb based alloy sheet [J]. Chin. J. Nonferrous Met., 2010, 20: 325
尹建明, 卢 斌, 李玉兰 等. Ti2AlNb合金板材的电子束焊接 [J]. 中国有色金属学报, 2010, 20: 325
[28] Zhu R C, Xie M R, Zhang Y K, et al. Effects of welding parameters on mechanical properties of Ti2AlNb based alloy in electron beam welding [J]. Aerosp. Manuf. Technol., 2009(5): 28
朱瑞灿, 谢美蓉, 张益坤 等. 焊接规范对Ti2AlNb基合金电子束焊接接头性能的影响 [J]. 航天制造技术, 2009(5): 28
[29] Tang T T. Research on interrfacial effect induced by phase transformation during superplastic diffusion bonding between Ti2AlNb Ti alloys [D]. Taiyuan: Taiyuan University of Technology, 2017
唐婷婷. 相变在Ti2AlNb与Ti合金超塑性扩散连接中产生的界面效应 [D]. 太原: 太原理工大学, 2017
[30] Wang X, Lu B, Wang J H, et al. Superplastic deformation behavior of annealed Ti2AlNb alloy sheet [J]. Chin. J. Nonferrous Met., 2010, 20: 289
王 新, 卢 斌, 王娟华 等. 退火态Ti2AlNb合金板材的超塑性变形行为 [J]. 中国有色金属学报, 2010, 20: 289
[31] Cai X Q. Study on processing and mechanical properties of diffusion bonded joints of Ti2AlNb alloy [D]. Tianjin: Tianjin University, 2017
蔡小强. Ti2AlNb合金扩散连接工艺及性能研究 [D]. 天津: 天津大学, 2017
[32] Lu Z G, Wu J, Xu L, et al. Ring rolling forming and properties of Ti2AlNb special shaped ring prepared by powder metallurgy [J]. Acta Metall. Sin., 2019, 55: 729
卢正冠, 吴 杰, 徐 磊 等. Ti2AlNb异形粉末环件的轧制成形与性能研究 [J]. 金属学报, 2019, 55: 729
[33] Xue K M, Zhang Y Q, Meng M, et al. Fracture behavior of B2 phase matrix of Ti2AlNb-based alloy with microcracks of different orientations [J]. Eng. Fract. Mech., 2023, 279: 109050
[34] Luo Y M, Liu J X, Li S K, et al. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Met. Mater. Eng., 2014, 43: 2692
骆雨萌, 刘金旭, 李树奎 等. 热轧TC4钛合金力学性能各向异性及影响因素分析 [J]. 稀有金属材料与工程, 2014, 43: 2692
[35] Goyal K, Sardana N. Mechanical properties of the Ti2AlNb intermetallic: A review [J]. Trans. Indian Inst. Met., 2021, 74: 1839
[36] Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metall. Trans., 1981, 12A: 409
[37] Zhang H Y, Yan N, Liang H Y, et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: A review [J]. J. Mater. Sci. Technol., 2021, 80: 203
[38] Huang Y. Study on hot deformation behavior and processing map of Ti2AlNb-based alloy [D]. Nanchang: Nanchang Hangkong University, 2015
黄 赟. Ti2AlNb基合金的热变形行为及加工图研究 [D]. 南昌: 南昌航空大学, 2015
[39] Banerjee D. Deformation of the O and α2 phases in the Ti-Al-Nb system [J]. Philos. Mag., 1995, 72A: 1559
[40] Roy S, Suwas S. Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B Alloy: Part I. Hot rolling in (α + β) phase field [J]. Metall. Mater. Trans., 2013, 44A: 3303
[41] Cheng C. Study on microstructure and superplasticity in TA32 titanium alloy plate [D]. Hefei: University of Science and Technology of China, 2021
程 超. TA32钛合金板材微观组织及超塑性研究 [D]. 合肥: 中国科学技术大学, 2021
[42] Zhao W J, Tang A, Lin Q Q, et al. Simulation of plastic deformation behaviors of Ti3Al single crystal with crystal plasticity finite element method [J]. Rare Met. Mater. Eng. 2018, 47: 1753
赵文娟, 唐 安, 林启权 等. Ti3Al单晶塑性变形行为的晶体塑性有限元模拟 [J]. 稀有金属材料与工程, 2018, 47: 1753
[1] WANG Hongying, YAO Zhihao, LI Dayu, GUO Jing, YAO Kaijun, DONG Jianxin. Similarities and Differences of Microstructure and Mechanical Properties Between High γ' Content Powder and Wrought Superalloys[J]. 金属学报, 2025, 61(9): 1364-1374.
[2] TAN Ruohan, SONG Yongfeng, CHEN Chao, LI Dan, CHENG Shu, LI Xiongbing. Mesomechanical Modeling and Experimental Study of Effective Elastic Tensors in Additively Manufactured Titanium Alloys[J]. 金属学报, 2025, 61(9): 1438-1448.
[3] XIAO Wenlong, ZANG Chenyang, GUO Jintao, FENG Jiawen, MA Chaoli. Two-Stage Aging Process of 7A65 Aluminum Alloy Thick Plate Based on In Situ Resistance Method[J]. 金属学报, 2025, 61(8): 1153-1164.
[4] WU Zewei, YAN Junxiong, HU Li, HAN Xiuzhu. Abnormal Rolling Behavior and Deformation Mechanisms of Bimodal Non-Basal Texture AZ31 Magnesium Alloy Sheet at Medium Temperature[J]. 金属学报, 2025, 61(8): 1165-1173.
[5] SHANG Hongchun, TIAN Zhongwang, NIU Lanjie, FAN Chenyang, ZHANG Zhewei, LOU Yanshan. Yield Evolution Behavior Characterization and Crystal Plasticity Simulation for 5182-O Aluminum Alloy[J]. 金属学报, 2025, 61(8): 1276-1292.
[6] XU Xiaoyan, FANG Chao, QIU Jianke, ZHANG Mengmeng, SHI Donggang, MA Yingjie, LEI Jiafeng, YANG Rui. Influence of Peak Stress on Room Temperature Dwell Effect in Ti6242 Compressor Disc Forging[J]. 金属学报, 2025, 61(8): 1141-1152.
[7] XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes[J]. 金属学报, 2025, 61(7): 998-1010.
[8] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[9] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[10] LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. 金属学报, 2025, 61(6): 826-836.
[11] HAO Xubang, CHENG Weili, LI Jian, WANG Lifei, CUI Zeqin, YAN Guoqing, ZHAI Kai, YU Hui. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2025, 61(6): 837-847.
[12] LIU Ziru, GUO Qianying, ZHANG Hongyu, LIU Yongchang. Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy[J]. 金属学报, 2025, 61(6): 848-856.
[13] YOU Yunxiang, TAN Li, GAO Jingjing, ZHOU Tao, ZHOU Zhiming. Controlling the Texture of Mg-Al-Zn-Mn-Ca Magnesium Alloy by Hot Rolling-Shearing-Bending Process and Annealing[J]. 金属学报, 2025, 61(6): 866-874.
[14] ZHAO Zhuoya, MENG Lingjian, LIN Peng, CAO Xiaoqing. Microstructure Evolution and Texture Formation Mechanism of α Phase During Continuous Through-Transus Thermal Compression of TC4 Titanium Alloy[J]. 金属学报, 2025, 61(5): 717-730.
[15] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
No Suggested Reading articles found!